
Machine scheduling with orientation selection and
two-dimensional packing for additive manufacturing

Yuxin Chea,1, Kanxin Hua,1, Zhenzhen Zhangb, Andrew Lima

aDepartment of Industrial Systems Engineering and Management, National University of Singapore, Singapore
117576, Singapore

bSchool of Economics and Management, Tongji University, Shanghai 200092, China

Abstract

In recent years, additive manufacturing (AM) gains increasing attention in manufacturing industries

due to the growing demands, and the corresponding machine scheduling problems also attract many

researchers. In this paper, we study a new unrelated parallel batch processing machine scheduling

problem arose in AM, which requires to simultaneously assign parts to batches, determine the

orientation of parts, pack the parts to the two-dimensional surface, and allocate the batches to

machines. It is the first work to consider the orientation selection for parts in machine scheduling

with the objective to minimize the makespan. To solve this problem, we first present a mixed integer

linear programming model. Then, a simulated annealing algorithm with designed packing strategies

based on the skyline representation of packing pattern is developed. Moreover, data structure Trie

is introduced to accelerate the whole procedure and four post-optimization methods are designed to

further refine solutions. Finally, a comprehensive computational study is conducted. The efficiency

of our heuristic algorithms is verified and the best packing strategy for this problem is identified.

The advantage of considering multiple orientations of parts in machine scheduling is demonstrated

by comparisons with scenarios of fixed orientation.

Key words: scheduling, additive manufacturing, unrelated parallel batch machines, part orientation

selection, two-dimensional bin packing, heuristics

1Yuxin Che and Kanxin Hu contribute equally to this paper.

Preprint submitted to Computers & Operations Research February 5, 2021

1. Introduction

This paper is motivated by production planning in the booming domain of manufacturing

industrial — additive manufacturing (AM), also known as 3D printing. AM is the method to build

parts from 3D digital model by forming materials layer by layer with effective technologies such as

selective laser melting, laser engineered shaping, and electron beam melting (Guo & Leu, 2013).

With these technologies, AM provides quite a lot of advantages such as design flexibility, model

complexity, manufacturing efficiency, etc. According to Pour et al. (2016), AM is promising to

have a significant impact on manufacturing supply chains and systems. Moreover, its total market

is predicted to rise nearly to $12 billion in 2025 (Vicari, 2015).

Although AM has received extensive attentions from researchers in recent years, most of studies

focus on the AM process itself, such as material renovation and upgrade of machine components

(Kucukkoc, 2019). As AM has been widely used and many AM service factories have appeared in

the commercial market, the requirements of time and quality also need to be addressed. Hence, the

efficiency of the machine scheduling part in the AM production becomes increasingly important,

which is the motivation of this study.

We focus on the selective laser melting (SLM) of AM process. In SLM, the designated parts

are formed by material powder, which is melted by a laser beam, layer by layer, as shown in Fig 1.

First, one recoater blade spreads a thin layer of powder over machine’s building platform. Second,

a moving laser scans the specified area to melt powder, and then one layer of the part is formed.

Third, the building platform moves down and steps 1 and 2 are executed again. By repeating these

three steps, the parts can be fully formed eventually.

The detailed AM scheduling problem is shown in Fig 2, which includes two stages: parts

assignment and batches allocation. The parts are first grouped into several batches, while the second

stage is to allocate the batches to different machines with respect to the machine capacity. Note

that, the orientations of parts are determined explicitly in the first stage. For each part, it has several

orientation candidates corresponding to different build directions in SLM machine. Fig 3 shows one

example of orientation candidates. Different orientations lead to different building heights, support

structures and production areas, which finally affect the building cost and time. Moreover, several

2

Figure 1: The process of SLM. Powder Layering Process: the recoater blade moves material powder from stock area to
printing area and spreads a thin layer of powder over printing area. Laser Melting Process: laser scanner is turned on
and scans the specified area to melt powder to form a structural layer of the part.

heterogeneous AM machines are available and each can produce a batch of parts simultaneously.

More specifically, every machine has its own specifications, such as setup time, production speed,

and machine capacity. Before starting the production process, a series of time-consuming operations

need be performed to set up the machines, such as model data uploading, parameters setting and

material filling. The production speed considered in SLM process mainly involves in scanning

speed and recoater speed (Kucukkoc, 2019). The capacity of a given AM machine is restricted

by the two-dimensional area of the machine’s building platform and its height. Thus, the parts in

a batch are required to be placed into the building platform of the allocated machine in certain

orientation without stack, and the maximal height can not exceed the machine height.

Based on the aforementioned characteristics, we denote this problem as the unrelated parallel

additive manufacturing machine scheduling problem with orientation selection and 2D packing

constraints. The objective is to minimize the makespan. To the best of our knowledge, our problem

is a new practical variant of the classical batch processing machine (BPM) scheduling problem with

several interesting features. First, because of the SLM process, the process time of one batch is not

determined by the largest processing time of parts (Kucukkoc, 2019), but related to the total volume

of parts and their support structures, as well as the maximum height of those parts. Second, most

of BPM problems are modelled as one-dimensional knapsack problems. However, we consider a

3

Figure 2: AM scheduling process. First, parts are assigned to different batches. Second, batches are allocated to
different additive machines.

Figure 3: An example of orientation candidates for one part.

4

problem with two-dimensional rectangular packing and the parts sizes are not fixed but changing

with the chosen orientation. Both batch machine scheduling problem and 2D packing problem are

proven NP-hard, so is our problem.

To solve this problem, we first present a mixed integer linear programming (MILP) model and

some strategies to strengthen the model. For larger scale instances, efficient heuristic algorithms

are designed. The simulated annealing algorithmic framework is introduced, where eleven types of

neighborhood operators are proposed to perform local search. For the packing subproblem, two

fitting strategies are introduced based on the skyline representation for packing patterns, which are

embedded to develop the random local search algorithm. In addition, data structure Trie is adopted

not only to track the packing feasibility information of parts already examined, but also to control

the effort spent in packing procedure. Furthermore, four greedy based post-optimization methods

are provided to refine the solution. Finally, we evaluate the performance of the proposed algorithms

with comprehensive analyses.

The main contributions of this paper are summarized as follows. First, this is the first work to

consider orientation selection and two-dimensional packing simultaneously in the batch processing

machine scheduling problem in AM. We propose the mathematical model and meta-heuristic

algorithms for this problem. Second, in the packing process, practical factors related to orientations

that influence the required processing time are considered, and new fitness evaluation strategies

are designed. The experimental results show the proposed RandomLS packing algorithm performs

better than the fixed-orientation scenarios. Third, data structure Trie is used to accelerate the packing

procedure and post-optimization methods are designed to improve the solutions obtained from SA

heuristic. Finally, extensive experiments are conducted to evaluate the proposed algorithms, and the

effectiveness of considering orientation selection in machine scheduling is verified.

The remainder of this paper is organized as follows. Section 2 reviews the related works.

The formal description and mathematical formulation is presented in section 3, followed by the

framework of the simulated annealing algorithm in section 4. Section 5 is dedicated to the packing

procedure, whereas post-optimization methods are explained in section 6. The experiments are

conducted to evaluate the performance of the proposed algorithms in section 7. The final conclusion

is drawn in section 8.
5

2. Literature Review

In this section, we review the literature related to the problem discussed in this work. We first

summary the research on BPM and analyze papers for planning and scheduling of AM production

(section 2.1), and then introduce the common methods of how to select orientations from candidates

(section 2.2).

2.1. Planning and scheduling of AM production

BPM scheduling problems in different machine environments have been studied extensively.

Based on the problem considered in this work, we mainly focus on the unrelated parallel BPMs

scheduling problems with non-identical job sizes. Li et al. (2013) first proposed to schedule

unrelated parallel BPMs with non-identical job sizes with the objective to minimize the makespan.

Heuristics based on Best-Fit and longest processing time (LPT) rules are designed to solve the

problem. Arroyo & Leung (2017b) introduced a variant with unequal release times and presented

an MILP model. They also proposed several heuristics based on the first-fit and best-fit earliest

job ready time rules. The same authors (Arroyo & Leung, 2017a) studied unrelated parallel batch

machine scheduling with non-identical capacities and unequal ready times. An effective iterated

greedy algorithm was provided to solve the problem. Later, Zhang et al. (2018) solved the unrelated

parallel BPMs with non-identical job sizes and arbitrary release times through a random-keys

genetic algorithm. A bi-objective batch processing problem with dual-resources on unrelated-

parallel machines was addressed in Shahvari & Logendran (2017), where a bi-objective MILP

model was developed in four layers and a Pareto optimal set was obtained.

From the planning and scheduling point of view in AM, the research is still limited. Li et al.

(2017) introduced a production planning problem in additive manufacturing. An MILP model was

presented with the objective of minimizing the average production cost per material volume. They

used CPLEX to solve the model and developed two heuristics, best-fit and adapted best-fit heuristics.

Chergui et al. (2018) addressed the production scheduling and nesting problem in AM with due date

constraints. They proposed a heuristic approach to minimize the maximum lateness. Dvorak et al.

(2018) studied an AM machine scheduling problem with a due date for each part, and its objective

was to minimise the number of tardy parts. Fera et al. (2018) presented a single AM machine
6

scheduling problem with the objective to minimize time consumption and material cost. Kucukkoc

(2019) addressed the scheduling problem of multiple AM machines and developed several MILP

models with the objective to minimize makespan. Besides, Zhang et al. (2020) considered the

parallel batch processing machine scheduling in additive manufacturing with irregular packing.

To the best of our knowledge, there is no research about the unrelated parallel BPMs scheduling

problems with non-identical job sizes and two-dimensional packing in AM.

2.2. Orientation Selection in AM

Since the orientation of each part has significant impact on the production cost and time, the

selection of the build orientation for a part is considered to be an important research problem.

The first selection criterion is the support structure. During the build process, support structure

is used to hold the surface of part where the angle with respect to the horizontal axis is smaller

than 45 degrees (Calignano, 2014). An example of the support structure is shown in Fig 4. In

general, support structures use the same building materials as the parts. That is, more support

structure means more recoatering time. Thus, a common objective is to minimise the projected

volume of support structures (Yang et al., 2003; Das et al., 2017). Another useful objective is to

minimise the total area of surfaces which need the support structure (Canellidis et al., 2009). The

second common selection criterion is the surface roughness. Surface roughness, caused by the

staircase effect of layer-by-layer production, is mainly used to estimate the quality of parts. There

are several objectives related to the roughness, including the average roughness (Pandey et al.,

2004; Thrimurthulu et al., 2004), the weighted average roughness (Byun & Lee, 2006b,a), and

the total area of surfaces with estimated roughness above a certain limit (Ahn et al., 2007). Other

criteria used to orientation determination are the building time and cost for one part (Lai & Chan,

1997; Alexander et al., 1998; Hur et al., 2001). Since there are different objectives, multi-attribute

decision making methods are provided. The weighted sum of objectives are proposed in Byun &

Lee (2006a) and Canellidis et al. (2009). Meanwhile, some researchers choose to optimize the

hierarchical objectives (Alexander et al., 1998). The pareto front approach is also studied recently

(Wu et al., 2014; Padhye & Deb, 2011). Note that Zhang et al. (2017) is the only work considering

the build orientation of multiple parts, but without considering two-dimensional packing.

7

Figure 4: The supported surface. If the angle α between the part surface and the horizontal axis is smaller than 45
degrees, support structure should be added. The gray area shows the added support structure.

3. Problem Description and Formulation

In this section, we provide a formal description and a mathematical model for the problem.

3.1. Problem Description

Let D denote a set of heterogeneous AM machines. Each machine m ∈ D is featured by setup

time S m, the scanning speed Vm, the recoater speed Um, and size of its building platform, where

(Lm,Wm,Hm) corresponds to its length, width, and height, respectively. Let I denote the parts to be

produced. Each part i ∈ I is featured by volume vi and a set of predetermined orientation candidates

Ni (Zhang et al., 2017). For each orientation n ∈ Ni, (qin, pin, rin, sin) are the corresponding length,

width, height, and the volume of needed support structure. Each part is produced only once.

As shown in section 1, all parts in I should be grouped into a set of batches K, which are further

allocated to machines in D, while the parts must be successfully packed into the allocated machine

without any overlap between each other. In this study, we consider the rectangular bounding box

of each part and assume that the production area of each part is represented by the bounding box

projected on the building platform during packing (Canellidis et al., 2013), and the packing of the

parts in the same batch is considered as a 2D rectangular packing problem. We also assume that

horizontal 90 degrees rotation of each part is allowed. During the packing procedure, each part is

allowed to choose one of its orientation candidates. The processing time of a batch is a function of

scanning time which is proportional to the total volume of parts and support structures, recoater

time which is proportional to maximum height of the parts in this batch, and the setup time of

the assigned machine (Kucukkoc, 2019). And the processing time of machine m is 0 if no parts

are assigned to it. The maximum height of the parts in the batch can not exceed the height of the

building platform of machine. The objective is to minimize the makespan of all machines.

8

In addition, we assume that the batch production process cannot be interrupted until it is finished.

Once a batch is assigned to a machine, the batch is characterized by the features of the machine,

including size, production time, etc. Therefore, in the following description of this paper, we will

simply use the word "batch" without mentioning the assigned machine.

3.2. Mathematical Formulation

This section presents an MILP model for the problem, which can be directly solved by commer-

cial softwares. The parameters used in the mathematical model are defined as follows:

• S m: the setup time of machine m;

• Vm: the scanning speed of machine m;

• Um: the recoater speed of machine m;

• (Lm,Wm,Hm): the length, width, and height of the building platform of machine m;

• vi: the volume of part i;

• (qin, pin, rin, sin): the corresponding length, width, height, and the volume of needed support

structure when part i is in the orientation n;

• M: a sufficiently large positive number. The values of Big M for different constraints are

specified in section 3.2.3.

The variables used in the mathematical model are defined as follows:

• t: maximal completion time of all machines, namely, makespan;

• zkm: binary variable, equal to 1 if the kth batch of machine m is used, and 0 otherwise;

• αikm: binary variable, equal to 1 if part i is assigned to the kth batch of machine m, and 0

otherwise;

• bi j: binary variable, equal to 1 if part i is at the left of part j, and 0 otherwise;

9

• ci j: binary variable, equal to 1 if part i is in front of part j, and 0 otherwise;

• ain: binary variable, equal to 1 if part i is placed in orientation n, and 0 otherwise;

• oi: binary variable, equal to 1 if the width of the part i is parallel to the length of the machine,

and 0 if part i is placed with its length parallel to the length of the machine;

• hkm: the height of the kth batch of machine m, namely, the maximum height of parts in this

batch;

• tkm: processing time of the kth batch of machine m;

• (xi, yi): the coordinates of the front-left corner of part i.

Using these variables, and the notation given in the previous subsection, this problem can be

formulated as follows.

min t (1)

s.t. t ≥
∑
k∈K

tkm, ∀m ∈ D, (2)∑
m∈D

∑
k∈K

αikm = 1, ∀i ∈ I, (3)∑
i∈I

αikm ≤ Mzkm, ∀k ∈ K,m ∈ D, (4)

tkm = S mzkm + Vm

∑
i∈I

(αikmvi + αikm

∑
n∈Ni

ainsin) + Umhkm, ∀k ∈ K,m ∈ D, (5)

xi +
∑
n∈Ni

ain pin ≤ Wm + M(1 − αikm) + Moi, ∀i ∈ I, k ∈ K,m ∈ D, (6)

xi +
∑
n∈Ni

ainqin ≤ Wm + M(1 − αikm) + M(1 − oi), ∀i ∈ I, k ∈ K,m ∈ D, (7)

yi +
∑
n∈Ni

ainqin ≤ Lm + M(1 − αikm) + Moi, ∀i ∈ I, k ∈ K,m ∈ D, (8)

yi +
∑
n∈Ni

ain pin ≤ Lm + M(1 − αikm) + M(1 − oi), ∀i ∈ I, k ∈ K,m ∈ D, (9)

10

xi +
∑
n∈Ni

ain pin ≤ x j + M(1 − bi j) + Moi, ∀i, j ∈ I, i , j, (10)

xi +
∑
n∈Ni

ainqin ≤ x j + M(1 − bi j) + M(1 − oi), ∀i, j ∈ I, i , j, (11)

yi +
∑
n∈Ni

ainqin ≤ y j + M(1 − ci j) + Moi, ∀i, j ∈ I, i , j, (12)

yi +
∑
n∈Ni

ain pin ≤ y j + M(1 − ci j) + M(1 − oi), ∀i, j ∈ I, i , j, (13)

bi j + b ji + ci j + c ji ≥ αikm + α jkm − 1, ∀i, j ∈ I, i < j, k ∈ K,m ∈ D, (14)∑
n∈Ni

ainrin ≤ hkm + (1 − αikm)M, ∀i ∈ I, k ∈ K,m ∈ D, (15)

hkm ≤ Hm, ∀k ∈ K,m ∈ D, (16)∑
n∈Ni

ain = 1, ∀i ∈ I, (17)

xi, yi ≥ 0, ∀i ∈ I, (18)

bi j, ci j ∈ {0, 1}, ∀i, j ∈ I, (19)

zkm ∈ {0, 1}, ∀k ∈ K,m ∈ D, (20)

αikm ∈ {0, 1}, ∀i ∈ I, k ∈ K,m ∈ D, (21)

hkm, Pkm ≥ 0, ∀k ∈ K,m ∈ D, (22)

oi ∈ {0, 1}, ∀i ∈ I, (23)

ain ∈ {0, 1}, ∀i ∈ I, n ∈ Ni (24)

tkm ≥ 0, ∀k ∈ K,m ∈ D, (25)

t ≥ 0. (26)

The objective (1) is to minimize the makespan which is the completion time of the last batch.

Constraints (2) ensure the calculation of makespan. Constraints (3) guarantee that each part is

processed only once by one machine. Constraints (4) ensure that a part cannot be assigned to an

unused batch. Constraints (5) are used to calculate the processing time of one batch. The processing

time of unused batches is automatically forced as 0.

11

Constraints (6)-(9) state that a part can not be placed outside the machine’s platform no matter

it is placed in horizontal or vertical direction. In constraints (6)-(9), if αikm equals to 1, it means that

the part is placed on batch k of machine m, where Lm and Wm are used to restrict the placement. If

αikm equals to 0, these constraints are relaxed. Constraints (6) and (7) are used to control the rotation.

When αikm equals to 1, if oi equals to 0, part i is placed with its length qin parallel to the length Lm

of machine m, thus constraints (6) are tight and constraints (7) are relaxed. When oi equals to 1, the

situation is reversed, where the width pin is parallel to the length Lm of machine m. The same logic

applies to constraints (8) and (9). Constraints (10)-(14) guarantee that if two parts are assigned in

the same batch, they cannot overlap. Specifically, if bi j = 1, constraints (10) and (11) force part i to

be placed totally on the left of part j. Otherwise, they are relaxed because part i is not necessarily

on the left of part j. The same logic applies to constraints (12) and (13). Constraints (14) guarantee

that if two parts are assigned to the same batch, one of the four positioning relationship variables

should be 1 and then overlap can be avoided. Constraints (15) are implemented to find the height

of one batch and constraints (16) ensure the height of one batch does not exceed the height of the

machine. Constraints (17) guarantee that only one orientation is chosen for every part. Constraints

(18)-(26) are domain constraints for variables.

3.2.1. Linearization

Since constraints (5) are quadratic, the Big M and new variables eikm are introduced to do the

linearization. The variable eikm represents the volume of the support structure of part i produced on

the kth batch of machine m. Then constraints (5) are replaced by constraints (27)-(29). Constraints

(27) are used to calculate the processing time of one batch, which is the same as constraints (5).

Constraints (28) guarantee that the volume of support structure used in calculation is consistent

with the chosen orientation of the part. Constraints (29) are domain constraints for variables eikm.

tkm = S mzkm + Vm

∑
i∈I

(αikmvi + eikm) + Umhkm, ∀k ∈ K,m ∈ D, (27)

eikm ≥
∑
n∈Ni

ainsin − (1 − αikm)M, ∀i ∈ I, k ∈ K,m ∈ D, (28)

12

eikm ≥ 0, ∀i ∈ I, k ∈ K,m ∈ D. (29)

3.2.2. Symmetry Breaking Constraints

There are two symmetry issues stemming from the identical batches of the same machine.

Denote by km the number of batches preassigned to each machine m, and k̃m the number of batches

actually used in each machine. First, there are
(

km
k̃m

)
possible options to choose the used batches.

Second, the k̃m! permutations of used batches are identical for a machine. Thus, they result in∏
m∈M

[(
km
k̃m

)
k̃m!

]
equivalent solutions in total, which typically slows down the solving process.

To break the first type of symmetry, we can use symmetry breaking constraints (30) to allow

batch k to be used only if batch k − 1 is used first. With the help of constraints (30), the batches

are utilised incrementally (starting from batch 1) on each machine. For second symmetry issue,

constraints (31) breaks the symmetry of batches by ordering them according to their processing

time.

zk−1,m ≥ zkm, ∀k ∈ K\{0},m ∈ D, (30)

Pk−1,m ≥ Pkm, ∀k ∈ K\{0},m ∈ D. (31)

3.2.3. Setting of Big M

In the mathematical model, Big M is used to turn on or turn off the enforcement of a constraint.

The value of the Big M usually has a great impact on the computational time and thus needs to be

chosen carefully. If M is too small, some feasible solutions may be cut off. On the other hand, the

model may become numerically difficult. Therefore, we carefully define the value for every Big M

in our model.

1) Constraints (4): the number of all parts, M = |I|.

2) Constraints (28): the largest volume of the support structure among all orientations of all parts,

M = maxi∈I maxn∈Ni sin.

3) Constraints (6) and (9): the largest width among all orientations of all parts, M = maxi∈I maxn∈Ni pin.

13

4) Constraints (7) and (8): the largest length among all orientations of all parts, M = maxi∈I maxn∈Ni qin.

5) Constraints (10): the largest width among all orientations of all parts plus the largest width

among all machines, M = maxi∈I maxn∈Ni pin + maxm∈D Wm.

6) Constraints (11): the largest length among all orientations of all parts plus the largest width

among all machines, M = maxi∈I maxn∈Ni qin + maxm∈D Wm.

7) Constraints(12): the largest length among all orientations of all parts plus the largest length

among all machines, M = maxi∈I maxn∈Ni qin + maxm∈D Lm.

8) Constraints (13): the largest width among all orientations of all parts plus the largest length

among all machines, M = maxi∈I maxn∈Ni pin + maxm∈D Lm.

9) Constraints (15): the largest height among all orientations of all parts, M = maxi∈I maxn∈Ni rin.

4. The Simulated Annealing Algorithmic Framework

Simulated annealing (SA) is widely used to solve combinatorial optimization problems. It was

motivated by the similarity between the metal annealing and the process of searching the optima

in combinatorial optimization problems. It starts with an initial solution and continues to search

among the neighboring space of the incumbent solution. To help escape from the local optima, SA

allows to accept the worsen solutions with certain probability which is controlled by the temperature

parameter. SA algorithm has been successfully introduced to solve the parallel machine scheduling

problems (Lin & Ying, 2015; Xiao et al., 2015) and the integrated routing and two-dimensional

loading problem (Wei et al., 2018). Therefore, SA is also adopted in this work. The pseudo-code of

our method is shown in Algorithm 1.

The cost(S) is the makespan of the scheduled solution. Initially, a solution S is constructed

(Line 1). In each iteration of the search process, the algorithm selects one neighborhood operator

using roulette wheel and generates a new neighboring solution S ′ based on the incumbent solution

S (Lines 5 and 6). The probability of one operator being chosen is dependent on the ratio of its

fitness to the sum of the fitness values for all the operators. In this study, the fitness is set to be the

number of times that the operator helps produce a new best solution. The packing algorithm is

introduced to ensure the feasibility of S ′ during the generation process. If the new solution S ′ is

14

Algorithm 1 SA
1: Construct the initial solution S ; initialize the roulette wheel
2: S best ← S , T ← T0, c← 0
3: while time limit is not reached and T > Tmin and c < Count do
4: for i from 1 to Len do
5: Select a neighborhood operator NS using roulette wheel
6: Generate a feasible solution S ′ from S with NS
7: if cost(S ′) < cost(S) then
8: S ← S ′

9: if S ′ is better than S then
10: S best ← S ′

11: c← −1
12: Update the roulette wheel
13: end if
14: else
15: Set S ← S ′ with the probability p = exp(− cost(S ′)−cost(S)

T)
16: end if
17: end for
18: T ← T ∗ α
19: c← c + 1
20: end while
21: return S best

better than S , it will be definitely accepted as the new incumbent solution. Otherwise, it is accepted

with a probability of exp(− cost(S ′)−cost(S)
T), where T is the temperature parameter used to control the

probability (Lines 7-16).

At the beginning, parameter T is set to T0 (Line 2). Then, during the process, T decreases by

multiplying the annealing rate α (Line 17) until it reaches to Tmin. A large initial temperature T0

means a big chance to accept worsen solutions, therefore helps escape the local optima. Along

with the decrease of T , it tends to only accept better solutions. In addition, the algorithm is also

terminated if the best solution is not improved for Count consecutive iterations. This avoids to

spend a long time under low temperatures without improving the best solution. The value of

Count is set as
⌊√

number o f parts
number o f machines

⌋
in this study. The construction of initial solution and design of

neighborhood operators are explained in sections 4.1 and 4.2, respectively.

15

4.1. Initial Solution

Based on the observation that the setup time of a new batch contributes a lot to the objective

function, we generate the initial solution using as fewer batches as possible, namely, each batch has

to pack parts to the maximum of its capacity. In each iteration, a machine with the least makespan

is chosen to create a new empty batch. Then, unpacked parts are sorted by decreasing heights, and

chosen one by one until the total area just reaches the batch area. Here, the area of each part is

calculated with its length multiplying the width from a randomly chosen orientation. Next, the

packing algorithm described in section 5 is invoked to check the feasibility. If no feasible packing

pattern is found, remove the last part and pack again until obtaining a feasible packing pattern.

After that, the list of unpacked parts is updated and the next iteration is repeated if the list is not

empty.

4.2. Neighborhood Operators

In this paper, 11 types of neighborhood operators are introduced with 3 basic operations:

relocation, swap and split. Based on the current feasible solution, a neighborhood operator is

chosen to form a new solution. Since the chosen neighborhood operator does not necessarily

generate a feasible solution every time due to the packing failure, it is allowed to attempt for up to

20 times until a feasible solution is found.

4.2.1. Relocating Operators

Five types of relocating operators are implemented to generate the neighboring solutions. The

first type is the relocation of one batch, where one batch is randomly chosen and relocated to

another machine. Fig.5(a) shows an example, where batch 1 in machine 1 is relocated to machine 2.

The second and third types are the relocation of one randomly chosen part to a different batch in

the same machine and across machines respectively. To further enlarge the neighboring space, we

also propose the other two types which are similar to the second and third types except that several

parts are randomly chosen from a batch (Fig.5(b) and 5(c)).

16

(a) Relocating one batch (b) Relocating parts in one machine

(c) Relocating parts across machines

Figure 5: Relocating operators

4.2.2. Swapping Operators

Swapping operators exchange positions of batches or parts. Similarly to the relocating operators,

five types are also developed, including swapping two batches from different machines, swapping

two parts belonged two batches of the same machine or different machines, swapping several parts

of two different batches in the same machine or across machines. The examples are shown in Fig.6

(a-c).

4.2.3. Splitting Operators

The splitting operator is to randomly choose a set of parts from one batch and use them to form

a new batch. The new batch is then allocated to a randomly chosen machine. As shown in Fig

7, parts 3 and 4 of batch 1 in machine 1 are moved to form a new batch 3 which is allocated to

machine 2.

5. Heuristic for the Packing Subproblem

In this section, we solve the packing subproblem to check the feasibility of a given batch. First,

the skyline representation of packing pattern is described. Next, two fitting strategies, Best-Fit and

17

(a) Swapping batches (b) Swapping parts in one machine

(c) Swapping parts across machines

Figure 6: Swapping operators

Figure 7: Splitting operations

18

First-Fit, are proposed in terms of fitness evaluation for the placement of each part. Then, random

local search heuristic algorithm is introduced to find the packing pattern for all parts. Finally, we

present the acceleration strategy embedded in the procedure, data structure Trie.

5.1. Representation of a packing pattern — Skyline

During the packing procedure, we usually maintain several lists: the packed item list, the

unpacked item list, and the remaining space list. The way to represent the remaining space affects

the packing utility greatly. In this section, we introduce a widely-used representation of packing

pattern — Skyline. Four corresponding fitness evaluations are also designed for the particular

settings in our paper.

The skyline representation of a packing pattern was first proposed by Burke et al. (2004) and

improved later by many researchers (Leung et al., 2011; Wei et al., 2017, 2018; Zhang et al., 2018).

The priority scoring rules used in paper are adopted from the method in Wei et al. (2018).

As Fig.8 (a) shows, a skyline based space is the contour of a vertical segment, which is

represented by five attributes (x, y,w, l1, l2), where (x, y) is the coordinates of the left endpoint of

the segment, w is the width of the segment, l1 and l2 are the bound of two sides. The initial space

is represented by a single line segment corresponding to the bottom of the machine platform. At

each iteration, the selected part is placed adjacent to the specific segment line either at the left

point or the right point. After the selected part is placed, the skyline is updated. A new segment

corresponding to the top edge of the part is added, and other existing segments affected are also

updated. Fig.8 (b)-(d) give three scenarios of updating the skylines after placing a part.

Figure 8: Skyline representation and updating process

We design three criteria to evaluate the fitness when choosing a part to place in a specific space:

19

Figure 9: Priority setting for different packing patterns

1) Priority evaluation. Fig 9 shows ten scenarios corresponding to different priority numbers, where

higher priority number represents better fitness. Especially three scenarios are included in case

(h). During the evaluation, we calculate the priority number for all orientations of each part.

When two or more situations have the same priority number, we randomly choose one.

2) Priority-Height evaluation. It is the same as the priority evaluation except that lower height is

chosen to break ties for the same priority number.

3) Priority-Support evaluation. It is the same as the priority evaluation except that less volume of

support structure is used to break ties.

The motivation of the last two fitness evaluations comes from the influence of parts’ orientations

to the time consumption. Therefore, the height or support structure of each part are added into

fitness evaluation to lower the maximal height or the volume of the batch, thus, reduce process time.

5.2. Packing Strategies

Given a sequence of parts in a batch, we implement two strategies First-Fit and Best-Fit to

determine the position of the parts. The detailed procedures are shown in Algorithm 2 and 3

respectively. The First-Fit strategy places the parts one by one according to the given sequence by

identifying the first feasible space, while the Best-Fit strategy always tries to fill the bottom left

space with the best suitable part. More specifically, the First-Fit strategy checks every remaining

space for each part until the first available space is found no matter in which orientation. Once
20

found, we place the part in the space and update the space list, then move to the next unpacked part.

The process is repeated until all parts are placed. Otherwise, the packing fails. However, in each

iteration of the Best-Fit strategy, the bottom left space is first selected. Then, for each unpacked

part, all orientations are evaluated and the one with the best fitness is kept. Next, the part with the

highest fitness is chosen to place and the space list is updated. The procedure is repeated until all

the parts are placed in or no spaces are available. The function Fit in Algorithm 3 indicates one

of the fitness evaluation introduced in section 5.1. Compared to the First-Fit strategy, the Best-Fit

strategy is apparently more time-consuming since it evaluates all possible packing patterns for

a specific space in each iteration. However, the Best-Fit strategy is more likely to find a better

packing pattern in terms of the objective function. In the experiments, we compare the performance

of these two strategies.

Algorithm 2 FirstFitPacking
Require: batch b, part list P

1: Initial the space s with the length and width of the batch;
2: S = {s}, num← 0
3: for each part i ∈ P do
4: for each orientation n ∈ Ni do
5: for each space s ∈ S do
6: if part i in orientation n can be placed in space s then
7: PlacePart(i, n, s);
8: Update space list S ;
9: num← num + 1;

10: Goto Out;
11: end if
12: end for
13: end for
14: end for
15: Out:
16: if num < |P| then
17: return infeasible
18: else
19: return best found packing pattern
20: end if

21

Algorithm 3 BestFitPacking
Require: batch b, part list P

1: Initial the space s with the length and width of the batch;
2: S = {s}, num← 0
3: while num < |P| and S ! = NULL do
4: Find the bottom left space in S ;
5: for each unpacked part i ∈ P do
6: for each orientation n ∈ Ni do
7: f itness← Fit(i∗, n∗, s∗);
8: if part i in orientation n can be placed in space s and fitness is better than fitness* then
9: i∗ ← i, n∗ ← n, f itness∗ ← f itness;

10: end if
11: end for
12: end for
13: PlacePart(i∗, n∗, s∗);
14: Update space list S ;
15: num← num + 1;
16: end while
17: if num < |P| then
18: return infeasible
19: else
20: return best found packing pattern
21: end if

5.3. Random Local Search Heuristic for the Packing Subproblem

This Random Local Search (RandomLS) algorithm takes the sequence of parts in a batch as

input, and output whether they can be placed in the limited machine area without overlap. If

feasible packing patterns are found, the packing pattern with the least processing time is chosen and

recorded; otherwise the batch can not be allocated to the machine. To accelerate the whole process,

the packing result of the batch is stored in a date structure Trie, which is introduced in section 5.4.

The detailed procedure is shown in Algorithm 4. Given a batch b, a set of parts P, and parameter

iter, the parts are sorted to form a sequence according to designed sorting rules at first, and then

FitPacking is called to get the packing pattern. FitPacking indicates any one of the packing strategies

introduced in section 5.2 (Lines 2-3). If no feasible packing pattern is found, two randomly selected

parts are swapped and FitPacking is called iteratively until a feasible packing pattern is returned

(Lines 4-7). Parameter iter here is set to be twice of the length of part list to limit the swap

22

operations for each call of RandomLS. If the processing time of the new packing pattern v′ is less,

the best v is updated (Lines 8-9).

Algorithm 4 RandomLS
Require: b, P, iter

1: for each sorting rule do
2: Sort P using the sorting rule
3: vbest ← FitPacking(b, P, iter), i = 0, iter = 2 ∗ |P|
4: while no packing pattern is found and i < iter do
5: Generate a new sequence P′ by swapping two randomly selected parts in P
6: v′ ← FitPacking(b, P′, iter), i← i + 1
7: end while
8: if v′ < vbest then
9: vbest = v′

10: end if
11: end for
12: if no packing pattern is found then
13: return infeasible
14: else
15: return best found packing pattern
16: end if

The following sorting rules are used in our implementation:

• Sort the parts by height in decreasing order;

• Sort the parts by area in decreasing order;

• Sort the parts by length in decreasing order;

• Sort the parts by width in decreasing order.

Take sorting by height for example, we set the height of each part as the minimum height among

all its orientations, and then sort the parts by the height in decreasing order. The same way is used

for the rest sorting rules.

5.4. Acceleration Strategy

In order to speed up the procedure, data structure Trie is introduced not only to track the

feasibility information of parts in the corresponding batch already examined, but also to control
23

the effort spent on the packing part. This strategy is adapted from Wei et al. (2014, 2018), which

was used to track the loading feasibility in vehicle routing problem. Due to the heterogeneous

machines in our study, a particular trie is built for each machine. For a given batch, before

invoking the RandomLS packing heuristic, we first retrieve the feasibility information from the

corresponding Trie, and then different actions are taken according to the returned information.

The stored information is a tuple (packed, num, packing pattern), where packed is the feasibility

information and num is number of calls of RandomLS on this batch. Five cases are classified based

on the value of this tuple:

1. packed == NULL (the batch does not exist in the Trie): The RandomLS is called to find the

packing pattern, and the result is stored into Trie;

2. packed == f easible, num < maxNum1 (feasible packing pattern of the batch exists in the

Trie, and the batch has been retrieved fewer than maxNum1 times): The RandomLS is called

to find the packing pattern, and the result is stored into Trie;

3. packed == f easible, num ≥ maxNum1 (feasible packing pattern of the batch exists in the

Trie, and the batch has been retrieved no less than maxNum1 times): The packing pattern is

implemented immediately;

4. packed == in f easible, num < maxNum2 (the batch has been packed but failed to find

a feasible packing pattern, and the batch has been retrieved less than maxNum2 times):

RandomLS is called to find the packing pattern, and the result is stored into Trie;

5. packed == in f easible, num ≥ maxNum2 (the batch has been packed but failed to find a

feasible packing pattern, and the batch has been retrieved no less than maxNum2 times):

Return failure .

The parameters maxNum1 and maxNum2 are used to restrict the maximum allowed calls. The

motivation of maxNum1 is to expand the diversity of feasible packing patterns of the same batch.

In the experiment, maxNum1 and maxNum2 are set to be 2 and the number of parts in the batch,

respectively. By setting this limitation, not too much effort is spent on the same batch, which can

improve the efficiency of our approach. In the experiments, 15% calls of Trie successfully return

f easible or in f easible, we can see that the utilization rate of data structure is very high.
24

6. Post-optimization

To further improve the solution obtained from the SA heuristic, we propose four post-optimization

methods, which are all greedy strategies.

1. Makespan based greedy method: move one randomly chosen batch from the machine with the

largest makespan to the one with the shortest makespan. The aim is to balance the workload

among all machines.

2. Util based greedy method: move a randomly chosen part from the batch with the largest

utilization rate to the batch with the smallest utilization rate. The utilization rate indicates the

ratio of packed area to the whole batch area.

3. Height variance based greedy method: move a randomly chosen part from the batch with the

largest height variance to the batch with the smallest height variance. The height variance of

a batch is calculated by the heights of all the parts packed on.

4. Height based greedy method: change the orientation of the highest part in each batch and

pack again. The aim is to reduce the maximal height of the batch, where the highest part

determines the height of each batch, which affects the recoater time.

The stop criteria for the first three methods are that the number of consecutive non-improved

iterations exceeds 20, and these four methods are performed successively. The factors that influence

the makespan involve various aspects including parts assignment, part properties and packing

pattern, and all these factors are correlative. For example, changing the orientation of a part may

reduce the height of a batch but increase the support volume simultaneously. Therefore, we cannot

guarantee the validity of the greedy methods. Actually, the first three greedy algorithms yield only

tiny improvements for a few instances in the experiments. However, because they are extremely

fast, we keep them included in the final design of our algorithms.

7. Experiments and Analysis

To evaluate the performance of the proposed algorithms, we conduct several computational

experiments on newly generated instances (section 7.1). First, parameter tuning is conducted
25

for SA in section 7.2. Second, the results obtained by solving the mathematical model and the

heuristic algorithms are compared in section 7.3. We also demonstrate the advantage of considering

orientation selection by comparing with fixed-orientation cases and shows the comparison of

different packing algorithms. Finally, analyses on the utility of operators, greedy search methods

and data structure Trie are given in section 7.4. All the heuristic algorithms are implemented in

Java and the experiments are conducted on an Intel(R) Xeon(R) Silver 4216 clocked at 2.10 GHz

with 502 GB RAM. The maximal computational time for each instance is set as 600 CPU seconds.

The MILP model is solved with ILOG CPLEX 12.8, and computing time for each instance is

limited to 7200 CPU seconds. The test instances and detailed solutions can be downloaded at

http://www.computational-logistics.org/orlib/2L-BPM.

7.1. Data Generation

Since no exactly the same studies have been found yet, we generate new instances from 3D

hardware designs in practical use. 88 parts are downloaded in form of "stl" file from the website

"Thingiverse", which is dedicated to share primarily free, open source hardware designs. For each

part, information of several orientations is collected, including width, length and volume of support,

using a 3D printing application named Repetier-Host. Three types of additive manufacturing

machines are generated based on Kucukkoc’s paper (Kucukkoc, 2019).

To diversify the datasets, seven classes of instances are generated, and each class has 20

instances. For each class, the total numbers of machines and parts are specified, and their detailed

types are randomly chosen from the aforementioned types. The detailed parameters are shown in

Table 1.

Table 1: Parameters for data generation
Class 1 2 3 4 5 6 7

machines 2 2 3 4 5 6 7
parts 20 50 100 200 300 400 500

7.2. Parameter Tuning

To fulfill the potency of SA, it is crucial to adjust values of multiple parameters such as initial

temperature T0, cooling rate α, and the length of Markov Chain Len. The length Len is set to be
26

http://www.computational-logistics.org/orlib/2L-BPM
https://www.thingiverse.com/

proportional to the number parts, namely Len = number o f machines ∗ number o f parts∗β+1000.

Because the numbers of machines and parts in small instances are small, 1000 extra steps are added

to the Len to exploit the local search fully. Besides, the minimum temperature is simply set as 0.1.

We generate another four new instances for each class to conduct this parameter tuning. Since

there is no obvious correlation between any pair of parameters, we analyze the possible values of

one parameter each time by fixing the other parameters (Kim et al., 2002). The average Makespan

used as indicator for performance analyses. Since we propose two packing strategies and three

fitness evaluations in section 5, four methods are generated in total. The parameter space definition

and the best parameters of these methods are summarized in Table 2. Note that the notation in

Table 2 is also used in the following sections.

Table 2: SA parameter tuning results for four methods

Parameters Range FF BF_P BF_PS BF_PH

T0 [5,15] 5 5 15 5
α [0.6,0.95] 0.9 0.7 0.7 0.7
β [0.5,2] 1.5 2 1 2

* FF: FirstFit packing strategy
* BF: BestFit packing strategy.
* P: Priority evaluation
* PS: Priority-Support evaluation
* PH: Priority-Height evaluation.

7.3. Results Comparison

7.3.1. Comparison with Different Solving Methods

To evaluate the performance of the proposed SA algorithm framework, we compare the best

heuristic results with solutions obtained by solving MILP model given in section 3 with CPLEX

solver. Within 7200 CPU seconds, class 1 is the only class solved to optima by CPLEX, except

one instance. For larger instances in class 2, feasible solutions are also recorded in Table 3 for

comparison with the proposed heuristic algorithm, where Makespan indicates the makespan of

each instance and Trun is the running time.

For class 1, although the SA algorithm doesn’t solves the instances to optima, the average gap

between heuristic results and the optimal solutions is less than 1.8% which is very small, and the
27

SA algorithm only uses one-eighth time of CPLEX. This also demonstrates the difficulty of this

problem. For class 2, no instances are solved to optima by CPLEX within 2 hours, but the SA

algorithm achieves better results on 18 among 20 instances with much less time. The average

improvement of solutions is up to 19.6%. Therefore, the proposed SA algorithm is competitive in

solution quality and computing speed, which is valuable in practical use.

Meanwhile, the detailed results obtained by four heuristic methods on the 7 classes are reported

in Table 4, where Makespan indicates average makespan (in units of hour) of 7 classes, batch is

the average number of used batches, Tbest represents the average time (in units of second) when the

best solution is found, and Trun gives the average running time (in units of second). It shows that

BF_PH performs best on all 7 classes in terms of Makespan, although BF_PH does not use the

least number of batches. For the number of used batches, BF_PS performs best on classes 1, while

BF_P performs better on the rest classes. Therefore, the number of batches does not necessarily

decide the final makespan. Moreover, for classes 1-5, BF_P requires the least number of batches on

almost all classes, but does not achieve the best makespan among four methods possibly due to

neglecting the impact of parts’ height on recoater time and support volume on scanning time. Table

5 shows the number of best results obtained by each method on 20 instances in each class. BF_PH

shows absolute superiority on all classes. In addition, BF_PS, which considers support structure

while packing, does not show obvious advantages. Compared with three methods based on Best-Fit,

FF cannot outperform on any indicator.

From the overall performance of the four methods, we can conclude that (1) Best-Fit packing

strategy is more effective than First-Fit packing strategy; (2) Packing patterns of each batch are

more important compared to the number of used batches; (3) The fact that BF_FH performs the

best indicates that height is an important factor considered in packing process.

28

Ta
bl

e
3:

C
om

pa
ri

so
n

w
ith

C
PL

E
X

an
d

SA

In
st

.
C

pl
ex

SA
In

st
.

C
pl

ex
SA

O
pt

im
ili

ty
M

ak
es

pa
n

T r
un

M
ak

es
pa

n
T r

un
O

pt
im

ili
ty

M
ak

es
pa

n
T r

un
M

ak
es

pa
n

T r
un

C
la

ss
1

1
O

pt
im

.
20

.1
9

29
20

.3
1

2

C
la

ss
2

1
Fe

as
.

78
.1

9
72

59
79

.1
8

63
6

2
O

pt
im

.
20

.7
6

30
21

.2
0

1
2

Fe
as

.
10

8.
45

72
02

74
.2

4
26

6
3

O
pt

im
.

29
.6

2
25

31
.2

4
4

3
Fe

as
.

10
3.

00
72

01
89

.2
1

97
4

O
pt

im
.

41
.5

1
54

41
.9

2
3

4
Fe

as
.

76
.0

3
72

02
75

.5
1

5
5

O
pt

im
.

25
.3

5
25

25
.7

4
4

5
Fe

as
.

89
.6

0
72

01
86

.5
7

35
0

6
O

pt
im

.
29

.8
9

8
29

.9
3

1
6

Fe
as

.
13

6.
34

72
01

64
.9

2
36

6
7

O
pt

im
.

34
.4

0
63

34
.7

6
0

7
Fe

as
.

67
.5

3
72

01
62

.7
9

95
8

O
pt

im
.

35
.9

8
32

36
.2

0
1

8
Fe

as
.

11
5.

01
72

01
80

.8
3

54
2

9
O

pt
im

.
29

.2
7

15
29

.6
3

2
9

Fe
as

.
84

.0
4

72
01

84
.9

3
47

6
10

O
pt

im
.

40
.9

8
25

42
.6

6
4

10
Fe

as
.

12
7.

56
72

01
83

.8
8

24
5

11
O

pt
im

.
40

.0
3

34
40

.6
5

0
11

Fe
as

.
10

2.
81

72
01

80
.5

6
23

6
12

O
pt

im
.

37
.2

5
70

38
.1

6
1

12
Fe

as
.

70
.7

8
72

10
68

.1
5

8
13

O
pt

im
.

31
.4

6
43

9
31

.7
1

5
13

Fe
as

.
93

.0
6

72
14

82
.6

9
11

8
14

O
pt

im
.

25
.7

4
43

26
.0

2
1

14
Fe

as
.

87
.8

8
72

01
77

.4
2

33
8

15
O

pt
im

.
31

.4
5

30
31

.7
0

1
15

Fe
as

.
59

.5
6

72
13

58
.4

1
68

16
Fe

as
.

31
.8

9
72

00
32

.8
1

10
16

Fe
as

.
61

.5
2

72
01

58
.3

0
31

17
O

pt
im

.
29

.9
2

23
31

.8
0

2
17

Fe
as

.
85

.8
8

72
01

81
.2

5
43

18
O

pt
im

.
32

.3
8

50
32

.6
3

2
18

Fe
as

.
64

.5
7

72
05

57
.4

5
33

19
O

pt
im

.
30

.4
4

44
30

.5
7

3
19

Fe
as

.
80

.6
2

72
01

77
.2

3
34

1
20

O
pt

im
.

31
.8

2
9

31
.9

6
2

20
Fe

as
.

92
.4

2
72

01
68

.7
6

94
A

vg
.

31
.5

2
55

.1
6

32
.0

8
2.

45
89

.2
4

72
05

.9
0

74
.6

1
21

9.
40

*
N

ot
e

th
at

in
st

an
ce

16
is

ex
cl

ud
ed

w
he

n
co

m
pu

tin
g

th
e

av
er

ag
e

T r
un

fo
rC

PL
E

X
of

cl
as

s
1.

Ta
bl

e
4:

R
es

ul
tc

om
pa

ri
so

n
fo

rf
ou

rm
et

ho
ds

C
la

ss
B

F_
PH

B
F_

PS
B

F_
P

FF

M
ak

es
pa

n
ba

tc
h

T b
es

t
M

ak
es

pa
n

ba
tc

h
T b

es
t

M
ak

es
pa

n
ba

tc
h

T b
es

t
M

ak
es

pa
n

ba
tc

h
T b

es
t

1
32

.0
8

2.
10

2.
45

32
.9

3
2.

00
2.

45
33

.5
6

2.
05

0.
25

37
.5

8
3.

10
3.

40
2

74
.6

1
2.

80
21

9.
40

74
.8

8
2.

80
16

8.
80

76
.2

3
2.

25
17

.3
5

83
.7

3
6.

10
35

.6
5

3
99

.6
2

5.
60

24
7.

15
10

0.
22

4.
40

32
3.

75
10

1.
00

3.
60

90
.1

0
10

8.
78

11
.3

5
58

.6
0

4
14

8.
16

12
.1

0
36

5.
85

14
8.

68
9.

35
43

7.
65

14
8.

89
6.

70
40

4.
95

16
1.

18
22

.3
5

12
5.

70
5

18
4.

24
19

.5
5

39
7.

00
18

5.
56

15
.4

0
50

1.
30

18
5.

03
11

.3
0

47
4.

40
19

9.
27

33
.7

5
26

4.
65

6
20

0.
89

21
.3

5
59

2.
85

20
2.

00
16

.9
0

65
3.

40
20

2.
27

12
.1

5
57

1.
70

21
7.

37
43

.5
5

44
6.

45
7

22
5.

15
31

.7
5

53
6.

30
22

7.
27

24
.6

5
72

9.
25

22
5.

26
17

.7
5

63
8.

45
24

5.
30

57
.0

0
59

2.
70

A
vg

.
13

7.
82

13
.6

1
33

7.
29

13
8.

79
10

.7
9

40
2.

37
13

8.
89

7.
97

31
3.

89
15

0.
46

25
.3

1
21

8.
16

29

Table 5: Count of best results for 4 methods
Class 1 2 3 4 5 6 7 Total

BF_PH 13 11 12 9 12 11 9 77
BF_PS 7 6 4 7 4 5 4 37
BF_P 0 3 4 4 4 4 7 26

FF 0 0 0 0 0 0 0 0

7.3.2. Comparison with Fixed-Orientation

To assess the advantage of taking orientations selection of parts into consideration in the

packing process, we compare the results with and without orientation selection. In the case of fixed

orientation, one orientation is determined for each part in certain way, and parts are enforced to be

packed in the fixed orientation but rotation is still allowed. Here, four ways are proposed to fix the

orientation based on the common sorting rules used in other similar studies. The detailed rules are

shown in below:

• Fix Height (FH): select the orientation with the minimum height for each part, and sort the

parts in descending height;

• Fix Support (FS): select the orientation with the minimum support structure for each part,

and sort the parts in descending support structure;

• Fix Area (FA): select the orientation with the minimum area structure for each part, and sort

the parts in descending area;

• Random (RD): randomly select an orientation for each part, and sort the parts randomly.

Since BF_PH performs the best among four methods, the comparative experiments are executed

using BF_PH method. Table 6 reports the detailed comparison results obtained by BF_PH using

these four fixing rules and orientation selection. We can see that our method shows advantages on

Makespan, Tbest and Trun. Although the gap of makespan between FH and our method is small, our

method requires much less running time and smaller number of batches. In terms of any indicator,

FS, RD and FA are not competitive. Note that FA uses the least number of batches but performs

worst on makespan. Table 7 shows the number of the best results obtained by these rules on 20
30

instances in each class. Our method performs better on more instances. Under comparison, FH and

FS are inferior. The reason is that FH only focuses on minimising the height, and FS only focuses

on minimising the support structure. Pursuing single objective like height or support structure leads

to the neglect of another objective. Considering different orientations, we can reach more search

space and balance different objectives to find better solutions.

Table 6: Result comparison in fixed orientations
Makespan batch Tbest Trun

MO 138.42 13.84 155.37 183.01
FH 138.94 15.71 202.31 238.89
FS 139.32 12.18 349.18 436.22
RD 142.98 11.21 343.83 420.59
FA 144.13 7.78 367.29 457.51
* MO: BF_PH with multiple orientations

Table 7: Count of best results for all fixed-orientation situation
Class 1 2 3 4 5 6 7 Total

MO 11 11 9 6 11 8 8 64
FH 8 5 5 3 4 6 6 37
FA 0 0 0 0 0 0 0 0
FS 4 4 5 11 4 6 6 40
RD 0 0 1 0 1 0 0 2

7.3.3. Comparison with Different Packing Algorithms

In our algorithm, RandomLS heuristic is used for packing of batches. To evaluate the perfor-

mance of RandomLS, another two classical heuristics simulating annealing (SA) and tabu search

(TS) are implemented for comparison. The comparison results in Table 7.3.3 show our algorithm

performs better with less time when using RandomLS. Although RandomLS is relatively simpler

than SA and TS, the packing problem is the subproblem of the whole machine scheduling problem,

and it takes account in both packing feasibility and batch processing time minimization.

31

Table 8: Result comparison with different packing algorithm

Class
RandomLS SA TS

Makespan batch Tbest Makespan batch Tbest Makespan batch Tbest

1 32.08 2.10 2.45 32.13 2.15 19.40 32.09 2.05 17.65
2 74.61 2.80 219.40 74.60 3.05 313.30 74.76 3.05 355.10
3 99.62 5.60 247.15 99.76 5.90 342.25 99.38 5.90 412.30
4 148.16 12.10 365.85 148.93 11.35 508.20 148.89 12.20 474.25
5 184.24 19.55 397.00 184.81 18.75 627.60 186.19 18.10 564.55
6 200.89 21.35 592.85 201.18 22.25 770.20 202.55 24.80 620.70
7 225.15 31.75 536.30 226.69 32.95 728.85 226.26 30.50 738.40

Avg. 137.82 13.61 337.29 138.30 13.77 472.83 138.59 13.80 454.71

7.4. Result Analysis

7.4.1. Usage of operators

We analyse the usage of the 11 operators. Figure 10 shows the number of accepting a new

solution when the operator is applied, and the ratio of accepting a new solution to the number

of usage is labeled above each bar. We can see that the operator OP_11 is used the most often,

following by OP_3 and OP_8, the accept ratio of operator OP_2 is highest. The accept ratio is 45%

on average.

32

Figure 10: Accept ratio of 11 operators. OP_1: relocate one batch; OP_2: relocate one part in one machine;
OP_3: relocate one part across machines; OP_4: relocate parts in one machine; OP_5: relocate parts across machines;
OP_6: swap batches; OP_7: swap two parts in one machine; OP_8: swap two parts across machines;
OP_9: swap several parts in one machine; OP_10: swap several parts across machines; OP_11: splitting.

7.4.2. Performance of Post-optimization Methods

Table 9 shows the total number of improved solutions with the four post-optimization strategies

for BF_PH method. The effectiveness of height based greedy method is the most obvious. Results

for more than 16.4% instances are improved during Post-optimization and their performance are

elevated by 1.6%.

Table 9: Utility of greedy search for BF_PH

Class 1 2 3 4 5 6 7 Total

GreedyMakespan 0 0 0 0 0 0 4 5
GreedyHeight 0 0 2 0 5 7 4 18

GreedyUtil 0 0 0 0 0 0 0 0
GreedyHeightIndicator 0 0 0 0 0 0 0 0

33

7.4.3. Utility of Trie

Table 10 shows the utility of data structure Trie for BF_PH on each class. 22.9% of overall

packing calls retrieve either feasible or infeasible answers from Trie. On smaller instances in class

1, it is easier to find answers from Trie, because smaller number of parts corresponds to fewer

combinations of parts, therefore, fewer packing patterns. Overall, 22.4% of the packing calls can

find answers from Trie, which helps save plenty of searching time to some extent. In addition, see

from the value of TS U/TS , up to 73% of the feasible results retrieved from Trie are put into use

instantly on average.

Table 10: Utility of Trie for BF_PH

Class PN TS TSU TSU/TS TF TS/Total TSU/Total TF/Total (TS+TF)/Total

1 375474 426619 344901 0.81 24379 0.516 0.417 0.029 0.546
2 1194393 249735 156795 0.63 37191 0.169 0.106 0.025 0.194
3 1008957 200870 112726 0.56 4698 0.165 0.093 0.004 0.169
4 1464136 234158 150883 0.64 1022 0.138 0.089 0.001 0.138
5 1958008 457169 315579 0.69 1352 0.189 0.131 0.001 0.190
6 2074890 568788 422663 0.74 735 0.215 0.160 0.000 0.215
7 2335260 886207 694141 0.78 238 0.275 0.215 0.000 0.275

Tot. 10411118 3023546 2197688 0.73 69615 0.224 0.163 0.005 0.229
* PN: times of not retrieving any result from Trie and resorting to packing algorithm
* TS : times of successfully retrieving feasible packing pattern from Trie
* TS U:times of successfully retrieving feasible packing pattern from Trie and put into use instantly
* TS U/TS : TrieSuccessUse / TrieSuccess
* T F: times of successfully retrieve infeasible packing pattern from Trie
* Total = TS + T F + PN

8. Conclusions

In this paper, we solved an unrelated parallel additive manufacturing machine scheduling prob-

lem with orientation selection and 2D packing constraints. In accordance with the characteristics of

the problem, we present an MILP model for the problem. Then, efficient SA algorithmic framework

is developed to solve this highly constrained problem. For the packing subproblem, we introduce

the random local search algorithm with two fitting strategies based on the skyline representation of

packing pattern. Moreover, data structure Trie is introduced to accelerate the packing procedure by

not only recording the packing information but also control the effort spent by packing procedure.

Furthermore, four greedy based post-optimization methods are designed to refine the solution.
34

Finally, extensive numerical experiments are conducted and show that the SA algorithm with BF-PH

performs the best. The effectiveness of orientation selection is demonstrated to help improve the

makespan in AM. Besides, some interesting observations are provided.

Although we have considered many constraints in this work, our model developed here can still

be extended in several ways. This study is based on the SLM process and parts cannot be put above

other parts. However, on some other AM process, it allows parts to be stacked on each other, which

imposes three dimensional constraints on this problem. Moreover, the due dates constraints and the

objective of minimizing total lateness can be considered and integrated into the model. We hope

our study can give researchers an insight into the machine scheduling problems in AM.

Acknowledgements

The authors thank the two anonymous reviewers whose comments helped to improve and clarify

this manuscript. This research was partially supported by the National Nature Science Foundation

of China (Grant no. 71871070), NRF Singapore [Grant NRFRSS2016-004], and MOE Academic

Research Fund of Singapore Tier 2 [Grant MOE2017-T2-2-153].

References

Ahn, D., Kim, H., & Lee, S. (2007). Fabrication direction optimization to minimize post-machining in layered

manufacturing. International Journal of Machine Tools and Manufacture, 47, 593–606.

Alexander, P., Allen, S., & Dutta, D. (1998). Part orientation and build cost determination in layered manufacturing.

Computer-Aided Design, 30, 343–356.

Arroyo, J. E. C., & Leung, J. Y.-T. (2017a). An effective iterated greedy algorithm for scheduling unrelated parallel

batch machines with non-identical capacities and unequal ready times. Computers & Industrial Engineering, 105,

84–100.

Arroyo, J. E. C., & Leung, J. Y.-T. (2017b). Scheduling unrelated parallel batch processing machines with non-identical

job sizes and unequal ready times. Computers & Operations Research, 78, 117–128.

Burke, E. K., Kendall, G., & Whitwell, G. (2004). A new placement heuristic for the orthogonal stock-cutting problem.

Operations Research, 52, 655–671.

Byun, H. S., & Lee, K. H. (2006a). Determination of optimal build direction in rapid prototyping with variable slicing.

The International Journal of Advanced Manufacturing Technology, 28, 307–313.

35

Byun, H.-S., & Lee, K. H. (2006b). Determination of the optimal build direction for different rapid prototyping

processes using multi-criterion decision making. Robotics and Computer-Integrated Manufacturing, 22, 69–80.

Calignano, F. (2014). Design optimization of supports for overhanging structures in aluminum and titanium alloys by

selective laser melting. Materials & Design, 64, 203–213.

Canellidis, V., Giannatsis, J., & Dedoussis, V. (2009). Genetic-algorithm-based multi-objective optimization of the

build orientation in stereolithography. The International Journal of Advanced Manufacturing Technology, 45,

714–730.

Canellidis, V., Giannatsis, J., & Dedoussis, V. (2013). Efficient parts nesting schemes for improving stereolithography

utilization. Computer-Aided Design, 45, 875–886.

Chergui, A., Hadj-Hamou, K., & Vignat, F. (2018). Production scheduling and nesting in additive manufacturing.

Computers & Industrial Engineering, 126, 292–301.

Das, P., Mhapsekar, K., Chowdhury, S., Samant, R., & Anand, S. (2017). Selection of build orientation for optimal

support structures and minimum part errors in additive manufacturing. Computer-Aided Design and Applications,

14, 1–13.

Dvorak, F., Micali, M., & Mathieug, M. (2018). Planning and scheduling in additive manufacturing. Inteligencia

Artificial, 21, 40–52.

Fera, M., Macchiaroli, R., Fruggiero, F., & Lambiase, A. (2018). Production management fundamentals for additive

manufacturing. 3D Printing, (pp. 71–88).

Guo, N., & Leu, M. C. (2013). Additive manufacturing: Technology, applications and research needs. Frontiers of

Mechanical Engineering, 8, 215–243.

Hur, S.-M., Choi, K.-H., Lee, S.-H., & Chang, P.-K. (2001). Determination of fabricating orientation and packing in sls

process. Journal of Materials Processing Technology, 112, 236–243.

Kim, D. W., Kim, K. H., Jang, W., & Frank Chen, F. (2002). Unrelated parallel machine scheduling with setup times

using simulated annealing. Robotics and Computer-Integrated Manufacturing, 18, 223–231.

Kucukkoc, I. (2019). MILP models to minimise makespan in additive manufacturing machine scheduling problems.

Computers & Operations Research, 105, 58–67.

Lai, K., & Chan, J. W. (1997). Developing a simulated annealing algorithm for the cutting stock problem. Computers

& Industrial Engineering, 32, 115–127.

Leung, S. C., Zhang, D., & Sim, K. M. (2011). A two-stage intelligent search algorithm for the two-dimensional strip

packing problem. European Journal of Operational Research, 215, 57–69.

Li, Q., Kucukkoc, I., & Zhang, D. Z. (2017). Production planning in additive manufacturing and 3d printing. Computers

& Operations Research, 83, 157–172.

Li, X., Huang, Y., Tan, Q., & Chen, H. (2013). Scheduling unrelated parallel batch processing machines with

non-identical job sizes. Computers & Operations Research, 40, 2983–2990.

36

Lin, S.-W., & Ying, K.-C. (2015). A multi-point simulated annealing heuristic for solving multiple objective unrelated

parallel machine scheduling problems. International Journal of Production Research, 53, 1065–1076.

Padhye, N., & Deb, K. (2011). Multi-objective optimisation and multi-criteria decision making in sls using evolutionary

approaches. Rapid Prototyping Journal, 17, 458–478.

Pandey, P. M., Thrimurthulu, K., & Reddy*, N. V. (2004). Optimal part deposition orientation in fdm by using a

multicriteria genetic algorithm. International Journal of Production Research, 42, 4069–4089.

Pour, M. A., Zanardini, M., Bacchetti, A., & Zanoni, S. (2016). Additive Manufacturing Impacts on Productions and

Logistics Systems. IFAC-PapersOnLine, 49, 1679–1684.

Shahvari, O., & Logendran, R. (2017). A bi-objective batch processing problem with dual-resources on unrelated-

parallel machines. Applied Soft Computing, 61, 174–192.

Thrimurthulu, K., Pandey, P. M., & Reddy, N. V. (2004). Optimum part deposition orientation in fused deposition

modeling. International Journal of Machine Tools and Manufacture, 44, 585–594.

Vicari, A. (2015). Advanced applications of 3d printing: From prototypes and parts. Additive Manufacturing for Defence

and Aerospace Summit, London, https://additivemanufacturing. iqpc. co. uk/downloads/advanced-applications-of-3d-

printing-fromprototypes-and-parts, .

Wei, L., Hu, Q., Leung, S. C., & Zhang, N. (2017). An improved skyline based heuristic for the 2D strip packing

problem and its efficient implementation. Computers & Operations Research, 80, 113–127.

Wei, L., Zhang, Z., & Lim, A. (2014). An adaptive variable neighborhood search for a heterogeneous fleet vehicle

routing problem with three-dimensional loading constraints. IEEE Computational Intelligence Magazine, 9, 18–30.

Wei, L., Zhang, Z., Zhang, D., & Leung, S. C. (2018). A simulated annealing algorithm for the capacitated vehicle

routing problem with two-dimensional loading constraints. European Journal of Operational Research, 265,

843–859.

Wu, S., Kay, M., King, R., Vila-Parrish, A., & Warsing, D. (2014). Multi-objective optimization of 3d packing problem

in additive manufacturing. IIE Annual Conference.Proceedings, (pp. 1485–1494).

Xiao, J., Yang, H., Zhang, C., Zheng, L., & Gupta, J. N. (2015). A hybrid lagrangian-simulated annealing-based

heuristic for the parallel-machine capacitated lot-sizing and scheduling problem with sequence-dependent setup

times. Computers & Operations Research, 63, 72–82.

Yang, Y., Fuh, J. Y., Loh, H. T., & Wong, Y. S. (2003). Multi-orientational deposition to minimize support in the

layered manufacturing process. Journal of manufacturing systems, 22, 116–129.

Zhang, D., Dong, R., Si, Y. W., Ye, F., & Cai, Q. (2018). A hybrid swarm algorithm based on ABC and AIS for

2L-HFCVRP. Applied Soft Computing, 64, 468–479.

Zhang, J., Yao, X., & Li, Y. (2020). Improved evolutionary algorithm for parallel batch processing machine scheduling

in additive manufacturing. International Journal of Production Research, 58, 2263–2282.

Zhang, Y., Bernard, A., Harik, R., & Karunakaran, K. (2017). Build orientation optimization for multi-part production

37

in additive manufacturing. Journal of Intelligent Manufacturing, 28, 1393–1407.

38

	Introduction
	Literature Review
	Planning and scheduling of AM production
	Orientation Selection in AM

	Problem Description and Formulation
	Problem Description
	Mathematical Formulation
	Linearization
	Symmetry Breaking Constraints
	Setting of Big M

	The Simulated Annealing Algorithmic Framework
	Initial Solution
	Neighborhood Operators
	Relocating Operators
	Swapping Operators
	Splitting Operators

	Heuristic for the Packing Subproblem
	Representation of a packing pattern — Skyline
	Packing Strategies
	Random Local Search Heuristic for the Packing Subproblem
	Acceleration Strategy

	Post-optimization
	Experiments and Analysis
	Data Generation
	Parameter Tuning
	Results Comparison
	Comparison with Different Solving Methods
	Comparison with Fixed-Orientation
	Comparison with Different Packing Algorithms

	Result Analysis
	Usage of operators
	Performance of Post-optimization Methods
	Utility of Trie

	Conclusions

