
Submitted to Transportation Science
manuscript TS-2018-0173

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

A Benders Decomposition Approach for the
Multi-Vehicle Production Routing Problem with

Order-up-to-level Policy

Zhenzhen Zhang
Department of Industrial Systems Engineering and Management, National University of Singapore, Singapore,

zhenzhenzhang222@gmail.com

Zhixing Luo
School of Management and Engineering, Nanjing University, Nanjing 210093, P.R. China, luozx.hkphd@gmail.com

Department of Industrial Systems Engineering and Management, National University of Singapore, Singapore

Roberto Baldacci
Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi”, University of Bologna, Via Venezia

52, Cesena 47521, Italy, r.baldacci@unibo.it

Andrew Lim
Department of Industrial Systems Engineering and Management, National University of Singapore, Singapore,

isealim@nus.edu.sg

The Production Routing Problem (PRP) arises in the applications of integrated supply chain which jointly

optimizes the production, inventory, distribution, and routing decisions. The literature on this problem is

quite rare due to its complexity. In this paper, we consider the multi-vehicle PRP (MVPRP) with Order-Up-

to-level inventory replenishment policy, where every time a customer is visited, the quantity delivered is such

that the maximum inventory level is reached. We propose an exact Benders’ decomposition approach to solve

the MVPRP, which decomposes the problem as a master problem and a slave problem. The master problem

decides whether to produce the product, the quantity to be produced, and the customers to be replenished

for every period of the planning horizon. The resulting slave problem decomposes into a Capacitated Vehicle

Routing Problem for each period of the planning horizon where each problem is solved using an exact

algorithm based on the set partitioning model, and the identified feasibility and optimality cuts are added to

the master problem to guide the solution process. Valid inequalities and initial optimality cuts are used to

strengthen the LP-relaxation of the master formulation. The exact method is tested on MVPRP instances

and on instances of the multi-vehicle Vendor-Managed Inventory Routing Problem, a special case of the

MVPRP, and the good performance of the proposed approach is demonstrated.
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1. Introduction

Inventory routing problems are among the most important and challenging extensions of Vehicle

Routing Problems (VRPs) (Toth and Vigo 2014). In its basic version, the Inventory Routing

Problem (IRP) is concerned with the distribution of a single product from a single facility to a

set of customers over a given planning horizon. Customers consume the product at a given rate

and can maintain an inventory of the product up to a specific level. A fleet of identical vehicles

is available for the distribution of the product. The objective is to minimize the total distribution

cost, computed as the sum of the route costs and inventory holding costs, without causing stockouts

at any of the customers. In the IRP, inventory control and routing decisions have to be made

simultaneously.

The Production Routing Problem (PRP) generalizes the IRP by taking the production decisions

into account. The PRP considers various decisions in supply chain simultaneously, including the

production, inventory management, and routing decisions. Generally speaking, over a multi-period

horizon, these integrated supply chain problems require to determine the period of production and

visit of each customer, the corresponding quantities of production to be produced and delivered

to the customers, and the detailed routing plan of the vehicles. The aim is to minimize the total

production, inventory and distribution costs.

The PRP is very difficult to solve in practice and finds a very large number of applications,

e.g., in so-called Vendor-Managed Inventory (VMI) systems, in which a supplier manages the

inventory replenishment of its customers (retailers). Therefore, the supplier has to decide the

periods when to replenish the customers over a given planning horizon, the routes to perform, and

the quantities to deliver at each visit to avoid stockouts at the customers. The application of vendor

managed resupply principles creates advantages for both supplier and customers. The vendor saves

on distribution costs by being able to better coordinate deliveries to different customers. Customers

may receive incentives and all save time and effort on inventory management.

VMI systems were first introduced in the literature through applications in the distribution

of liquid air products, but many different industries are now implementing such systems or are

exploring their use. These include the automotive, electronics assembly, and chemicals industries,

vending machines for juice or foods, chain stores, maritime logistics, among others (Andersson

et al. 2010, Coelho et al. 2014). The number of applications is increasing, along with the need

for approaches to the PRP that can handle the additional constraints and complexities found in

practical contexts.

1.1. Literature review

The IRP was introduced by Campbell et al. (2002) in the context of the distribution of liquid air

products. The authors described a two-phase heuristic approach based on decomposing the set of
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decisions into the creation of a delivery schedule, followed by the construction of a set of delivery

routes. This solution methodology was designed for the solution of large-scale, real-life instances.

There is a growing number of references to inventory routing and related problems in the litera-

ture. Surveys on IRPs can be found in Bertazzi et al. (2008) and Andersson et al. (2010). The more

recent survey papers of Coelho et al. (2014) and Adulyasak et al. (2015) provide a comprehensive

review of the IRP literature, based on a new classification of the problems. IRPs are categorized

with respect to their structural variants and with respect to the availability of information on

customer demand.

An important variant of the IRP arises when both inventory control at the depot and inventory

costs are considered. This problem is often called the Vendor-Managed Inventory Routing Problem

(VMIRP). The PRP further generalises the VMIRP by considering, in addition to inventory control,

production lot-sizing decisions at the depot.

Three main replenishment policies for the customers have been considered in the inventory

routing literature (Archetti et al. 2007). In the first policy, called order-up-to-level (OU) policy,

every time a customer is visited, the quantity delivered is such that the maximum inventory

level of the customer is reached. The second policy, called maximum-level (ML) policy, relaxes

the OU policy by allowing the quantity delivered to a customer to be any value such that the

resulting inventory level is between the current level and the maximum level. The third policy,

called replenishment (RP) policy, further relaxes the ML policy by relaxing the constraint on the

maximum inventory level and by allowing the delivered quantity to be any positive value.

The single-vehicle VMIRP with the OU policy was introduced by Bertazzi et al. (2002), who

proposed a heuristic algorithm for its solution. Archetti et al. (2007) developed a branch-and-

cut approach for the VMIRP with a single vehicle and the three different replenishment policies

described above. They could solve instances with up to 45 customers and three periods and up to

30 customers and six periods to optimality within two hours for the VMIRP with the OU and ML

policies, respectively. Another branch-and-cut algorithm, based on a stronger mathematical formu-

lation, was introduced by Solyalı and Süral (2011) who were able to solve to optimality instances

with up to 60 customers and three periods or 15 customers and 12 periods. Their formulation relies

on the shortest path representation of the lot sizing problem, where decision variables indicate time

intervals between successive deliveries. Avella et al. (2015) took advantage of the special structure

of test instances and developed tighter reformulations for the single-vehicle IRP with both OU

and ML policies. The authors reported computational results on benchmark instances with 50 cus-

tomers and six periods. Heuristic algorithms for the single-vehicle VMIRP have been investigated

by Archetti et al. (2012).
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Coelho and Laporte (2013) introduced a branch-and-cut algorithm for the multi-vehicle variant

of the VMIRP. Their algorithm uses an extension of the Archetti et al. (2007) formulation and

it could solve some instances with up to 45 customers, three periods and three vehicles. The

results of Coelho and Laporte (2013) were further improved by Coelho and Laporte (2014) by

introducing new valid inequalities based on the relation between demand and available capacities.

Exact algorithms for the multi-vehicle VMIRP have also been proposed by Avella et al. (2018)

and Desaulniers et al. (2016). Avella et al. (2018) described IRP reformulations under the ML

replenishment policy, derived from a single-period substructure, and defined a generic family of

valid inequalities. The authors described a branch-and-cut algorithm and reported computational

results for the benchmark instances with 50 customers and three periods and 30 customers and six

periods. Desaulniers et al. (2016) described a branch-price-and-cut algorithm based on an innovative

mathematical formulation for the problem under the ML policy, tightened with the inclusion of

known and new families of valid inequalities. The authors reported computational experiments

on a set of 640 benchmark instances involving between two and five vehicles, showing that their

branch-price-and-cut algorithm outperforms the branch-and-cut algorithm of Coelho and Laporte

(2014) on the instances with four and five vehicles.

The literature on PRP problem is rather limited. Archetti et al. (2011) adapted the branch-and-

cut method of Archetti et al. (2007) to solve the single-vehicle PRP under ML policy and reported

computational experiments on small size instances involving 14 customers. Exact algorithms for

the multi-vehicle PRP (MVPRP) have been proposed by Bard and Nananukul (2010) and by

Adulyasak et al. (2014a). Bard and Nananukul (2010) introduced a branch-and-price procedure for

the PRP with the ML policy and with multiple vehicles. Instances with up to 10 customers were

solved to optimality within 30 minutes. Adulyasak et al. (2014a) considered both the multi-vehicle

VMIRP and the MVPRP. They introduced different mathematical formulations, with and without

a vehicle index, to solve the problems under both the ML and OU inventory replenishment policies.

By using parallel computing, the algorithms of Adulyasak et al. (2014a) could solve instances with

up to 45 and 50 customers (with three periods and three vehicles) for the VMIRP and PRP with

the ML policy, respectively. For the OU policy, the algorithms could handle instances with up to

45 customers (with three periods and three vehicles) and 35 customers (with six periods and three

vehicles) for the VMIRP and the PRP, respectively. Heuristic algorithms for both the multi-vehicle

VMIRP and the MVPRP can be found in Adulyasak et al. (2014b).

According to the classification introduced by Coelho et al. (2014), all the inventory routing

problems mentioned above belong to the class of problems with finite time horizon. The problems

are also deterministic and static due to the assumption that consumption rates are known upfront.

If the information on demand is not fully available to the decision maker at the beginning of the
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planning horizon, the problem is not deterministic. In this case, if the probability distribution of the

demand is known, then the problem is called the stochastic IRP. Dynamic IRPs arise when demand

is not fully known in advance, but is gradually revealed over time, as opposed to what happens in

a static context. Solyalı et al. (2012) introduced a branch-and-cut algorithm for a robust IRP in

which demand is uncertain but its probability distribution is unknown. This algorithm could solve

instances with up to 30 customers and seven periods. Their approach was also adapted to solve

the deterministic IRP with demand backlogging and could solve instances of the same size as for

the robust IRP. For these last variants of the IRP, the reader is referred to the survey of Coelho

et al. (2014).

1.2. Contributions

The main contribution of this paper is to propose a new exact algorithm for the MVPRP specifically

tailored for the OU policy which is accounted to be the most difficult MVPRP policy (Adulyasak

et al. 2014a). It is a Benders decomposition algorithm based on the path-based formulation pro-

posed by Solyalı and Süral (2011) and also used by Adulyasak et al. (2014a). The problem is

decomposed into a master problem, that decides whether to produce the product, the quantity to

be produced, and the customers to be replenished for every period of the planning horizon and in

a slave problem, that is further decomposed into Capacitated VRP, one problem for each period

of the planning horizon. The algorithm relies on procedures used to compute a lower bound on

the total routing cost of any optimal MVPRP solution and to generate a priori optimality cuts. In

order to evaluate and assess the efficiency of our algorithm, extensive computational experiments

were performed on both MVPRP and multi-vehicle VMIRP instances.

The remainder of this paper is organized as follows. Section 2 formally defines the problem

and presents the formulation proposed by Adulyasak et al. (2014a). The Benders reformulation,

the logic-based Benders decomposition algorithm, and its algorithmic features are then presented

in Section 3. Section 4 introduces features that improve the efficiency of the algorithm. Section

5 presents the results of extensive computational experiments performed on both MVPRP and

multi-vehicle VMIRP instances. Conclusions and future research directions are given in Section 6.

2. Problem description and mathematical formulation

In this section, we formally describe the MVPRP and we give the mathematical formulation of

Adulyasak et al. (2014a) that is in turn based on the formulation of Solyalı and Süral (2011).

Let G= (N,E) be a complete and undirected graph where N = {0, . . . , n} is the node set and

E is the edge set. Set Nc = {1, . . . , n} corresponds to n customers and node 0 corresponds to the

plant or depot. Each edge {i, j} ∈ E is associated a routing cost cij. We consider the problem of

supplying the customers with a single product from the plant over a discrete planning horizon of
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length l. At the beginning of each period, the production plant can produce at most C units of

product with a fixed setup cost equal to f and a unit production cost equal to u. Node i, i ∈N ,

has an inventory capacity of Li units and an inventory unit cost equal to hi. The quantity of the

product held by node i at the beginning of the planning horizon is Ii0. Customer i∈Nc requires dit

units of product during period t and can be visited at most once per period. A set of m identical

vehicles of capacity Q are available at the depot.

The MVPRP consists of simultaneously deciding (i) when and how much to produce at the plant

(ii) when and how much to deliver to each customer and (iii) what routes to use in every period

of the planning horizon. The objective is to minimize the sum of the production, inventory and

routing costs during the planning horizon without causing stockouts at any of the customers.

In this paper, we consider the OU policy as replenishment policy. Moreover, as commonly

assumed in the literature, for each period the production at the plant takes place before delivery

and the deliveries at the customers are executed at the beginning of the time period.

2.1. Mathematical formulation

The following notation is adopted, as defined by Adulyasak et al. (2014a):

• T : set of time periods {1, . . . , l}; to simplify the formulation, we introduce a fictitious period

l+ 1, and we define T ′ = T ∪{l+ 1};

• givt: total delivery quantity when customer i is visited in period t and the previous visit is in

period v, computed as

givt =

{∑t−1
j=1 dij + (Li− Ii0), if v= 0,∑t−1
j=v dij, if 0< v < t≤ l+ 1;

• eivt: total inventory holding cost when customer i is visited in period t and the previous visit

is in period v, computed as

eivt =

hi
(∑t−1

j=1(Ii0−
∑j

r=1 dir)
)
, if v= 0,

hi

(∑t−1
j=v(Li−

∑j

r=v dir)
)
, if 0< v < t≤ l+ 1;

• µ(i, t): the latest period after period t when customer i can be replenished next without having

a stockout, computed as µ(i, t) = arg maxt<v≤l+1{gitv ≤Li};

• π(i, t): the earliest period before period t when customer i can be replenished without having

a stockout, computed as π(i, t) = arg min0≤v<t{givt ≤Li}.

Note that in the definitions listed above, giv l+1 is a fictitious delivery, and it is only used to compute

µ(i, t) and π(i, t). The following decision variables are used by the formulation:

• pt: nonnegative continuous variable denoting the production quantity in period t;

• Iit: nonnegative continuous variable denoting inventory level at node i at the end of period t;



Zhang, Luo, Baldacci, and Lim: Benders Decomposition for MVPRP with OU Policy
Article submitted to Transportation Science; manuscript no. TS-2018-0173 7

• yt: binary variable equal to 1 if and only if there is production at the plant in period t;

• zit: binary variable equal to 1 if and only if node i, i∈Nc, is visited in period t;

• st: nonnegative integer variable denoting the number of vehicles used in period t;

• xijt: integer variable that might take value in {0,1}, {i, j} ∈ E, i 6= 0, t ∈ T , and value in

{0,1,2}, {0, j} ∈E, t∈ T ;

• λivt: binary variable equal to 1 if and only if node i is visited in period t and the previous visit

is in period v.

The following additional notation is used in the formulation. We denote with E(S) the set of

edges with both nodes in S, i.e., {{i, j} ∈E : i, j ∈ S,S ⊆N} and with δ(S) the set of edges incident

to a node in S, i.e., δ(S) = {{i, j} ∈ E : i ∈ S, j /∈ S or i /∈ S, j ∈ S}; we use δ(i) to denote the set

of edges incident to node i. The mathematical formulation without a vehicle index of the MVPRP

described by Adulyasak et al. (2014a) for the OU policy is as follows:

(F ) z(F ) = min
∑
t∈T

(
upt + fyt +h0I0t +

∑
{i,j}∈E

cijxijt

)
+
∑
t∈T ′

∑
i∈Nc

t−1∑
v=π(i,t)

eivtλivt (1)

s.t. I0 t−1 + pt =
∑
i∈Nc

t−1∑
v=π(i,t)

givtλivt + I0t, ∀t∈ T, (2)

pt ≤Cyt, ∀t∈ T, (3)

I0t ≤L0, ∀t∈ T, (4)
t−1∑

v=π(i,t)

λivt = zit, ∀i∈Nc, t∈ T, (5)

µ(i,0)∑
t=1

λi0t = 1, ∀i∈Nc, (6)

t−1∑
v=π(i,t)

λivt−
µ(i,t)∑
v=t+1

λitv = 0, ∀i∈Nc, t∈ T, (7)

l∑
t=π(i,l+1)

λit l+1 = 1, ∀i∈Nc, (8)∑
{j,j′}∈δ(0)

xjj′t = 2st, t∈ T, (9)∑
{j,j′}∈δ(i)

xjj′t = 2zit, ∀i∈Nc, t∈ T, (10)

st ≤m, ∀t∈ T, (11)

Q
∑

{i,j}∈E(S)

xijt ≤
∑
i∈S

(
Qzit−

t−1∑
v=π(i,t)

givtλivt

)
, ∀S ⊆Nc, |S| ≥ 2, t∈ T, (12)

pt, Iit ≥ 0, ∀i∈N, t∈ T, (13)

yt, zit ∈ {0,1}, ∀i∈Nc, t∈ T, (14)
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λivt ∈ {0,1}, ∀i∈Nc, v, t∈ T ′, (15)

st ∈ {0, . . . ,m}, ∀t∈ T, (16)

xijt ∈ {0,1}, ∀{i, j} ∈E : i 6= 0, t∈ T, (17)

x0jt ∈ {0,1,2}, ∀j ∈Nc, t∈ T. (18)

The objective function (1) minimizes the total cost consisting of production, setup, inventory,

and routing costs. Constraints (2) guarantee the inventory flow balance at the plant. Constraints

(3) ensure that the production capacity is not violated if the production takes place, otherwise no

product is produced. The inventory capacity constraint at the plant for each period is imposed by

constraints (4). Constraints (5) link variables z with variables λ. Constraints (6), (7) and (8) are

flow conservation constraints on the shortest path network for each customer. Constraints (9), (10)

and (12) are the routing related constraints. Constraints (11) limit the number of available vehicles.

Constraints (12) impose both connectivity and vehicle capacity constraints and are based on the

the generalized fractional subtour elimination constraints of the Capacitated VRP (Toth and Vigo

2014). Given a feasible solution F and a pair (S, t), the term at the right-hand side is equal to

Q multiplied by the number of customers in S visited on day t (say α) minus the total demand

delivered to the visited customers. If the inequality is divided by Q, the term at the left-hand side,

i.e., the total number of edges in solution with both nodes in set S, must be less than or equal

to α minus a lower bound on the number of vehicles necessary to visit the customers in S (say

β, computed as the ratio between the total demand in S and Q), thus imposing that at least dβe

edges leave the customer set S.

3. Benders decomposition

In this section, we describe an exact approach based on logic-based Benders decomposition, that

was formally developed by Hooker (2000), and applied with success by Hooker and Ottosson (2003)

to 0-1 programming and by Hooker (2007) to planning and scheduling problems. The approach was

later specialized to mixed integer programming by Codato and Fischetti (2006) who introduced

the so-called combinatorial Benders cuts. Logic-based Benders decomposition is a generalization

of classical Benders decomposition that can be applied to a much wider variety of combinatorial

optimization problems since the subproblem may be any combinatorial problem, not necessarily a

linear or nonlinear programming problem (Hooker and Ottosson 2003).

3.1. Logic-based Benders reformulation

Benders decomposition was first proposed by Benders (1962) to efficiently solve mixed integer

programming models. Basically, it decomposes the original problem into two simpler ones, i.e. an

integer master problem (BMP) and a linear slave problem or subproblem (BSP), which are solved
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in an iterative fashion by utilizing the solution of one in the other. At each iteration, the master

problem actually behaves as a relaxation of the original problem and provides fixed integer variable

values for the slave problem to obtain a feasible solution. A Benders cut is constructed and added

to the master problem in the next iteration to exclude the solution just obtained in the last master

problem. Therefore, each solution of the master problem must satisfy all the Benders cuts generated

so far to avoid repetition. The master problem and the slave problem are solved in this iterative

fashion until an optimal solution to the original problem is obtained. The generation of Benders

cuts (i.e., optimality and feasibility cuts) is the core of the Benders decomposition algorithm, and

they guarantee the convergence of the iterations to the optimal solution of the original problem.

Furthermore, these cuts also determine how fast the algorithm converges. The classic Benders

decomposition algorithm was proposed for linear programming problems (Benders 1962), the cut

generation of which is based on the strong duality property of linear programming. Geoffrion (1972)

has extended it to a larger class of mathematical programming problems. For more general integer

programming, logic-based Benders decomposition was proposed to generate valid integer Benders

cuts (Hooker 2000, Hooker and Ottosson 2003). The key is to generalize the linear programming

dual used in the classical method to an inference dual and the solution of the inference dual takes

the form of a logical deduction that yields valid Benders cuts. In the following, we describe in

details our reformulation of formulation F based on logic-based Benders decomposition.

The reformulation is based on the observation that once variables p, I, y, λ and z have been

fixed, formulation F decomposes into l subproblems, where each subproblem is a CVRP defined

on the customer delivery quantities determined by the values of variables z and λ.

Introducing nonnegative continuous extra variables ωt, ∀t ∈ T , for the routing costs associated

with the different periods, we can reformulate the MVPRP as follows:

(F ) z(F ) = min
∑
t∈T

(
upt + fyt +h0I0t +ωt

)
+
∑
t∈T ′

∑
i∈Nc

t−1∑
v=π(i,t)

eivtλivt (19)

s.t.
∑
t∈T

ωt ≥ φ(z,λ),

(2)− (8), (13), (14), (15),

ωt ≥ 0,∀t∈ T, (20)

where

φ(z,λ) = min
∑
t∈T

∑
{i,j}∈E

cijxijt (21)

s.t. (9)− (12), (16), (17) and (18),

is the separation subproblem, where we assume φ(z,λ) =∞ if the problem is infeasible.



Zhang, Luo, Baldacci, and Lim: Benders Decomposition for MVPRP with OU Policy
10 Article submitted to Transportation Science; manuscript no. TS-2018-0173

The above reformulation can be handled by solving a Benders master problem (BMP) to integer

optimality before calling a Benders subproblem (BSP) corresponding to the separation subproblem.

We have three possible outcomes about a solution (p∗, I∗, y∗, z∗, λ∗, ω∗) of BMP:

i) Problem BSP is infeasible for (z∗, λ∗), and one can add the following infeasibility cut to BMP

fλ∗(λ)≥ 1 (22)

where

fλ∗(λ) =
∑
t∈T

∑
i∈Nc

t−1∑
v=π(i,t):λ∗ivt=1

(1−λivt) +
∑
t∈T

∑
i∈Nc

t−1∑
v=π(i,t):λ∗ivt=0

λivt

that cuts off solution λ∗.

ii) Problem BSP is feasible for (z∗, λ∗), but φ(z∗, λ∗)>
∑

t∈T ω
∗
t , then one can add the following

optimality cut to BMP ∑
t∈T

ωt ≥ g(z∗,λ∗)(λ) (23)

where g(z∗,λ∗)(λ) = φ(z∗, λ∗)− (φ(z∗, λ∗)−LBR)fλ∗(λ) and LBR is a lower bound on φ(z,λ),

i.e., a lower bound on the routing cost of any optimal MVPRP solution.

iii) Problem BSP is feasible for (z∗, λ∗), and φ(z∗, λ∗) =
∑

t∈T ω
∗
t =

∑
t∈T
∑
{i,j}∈E cijx

∗
ijt, where

(s∗, x∗) is an optimal solution of BSP. Solution (p∗, I∗, y∗, z∗, λ∗, s∗, x∗) is an optimal MVPRP

solution with value
∑

t∈T

(
up∗t + fy∗t +h0I

∗
0t

)
+
∑

t∈T ′
∑

i∈Nc

∑t−1
v=π(i,t) eivtλ

∗
ivt +φ(z∗, λ∗).

The exact algorithm based on the above logic-based Benders reformulation is as follows. The

initial master problem BMP is defined by the objective function (19) subject to constraints (2)-(8),

(13), (14), (15) and (20). The algorithm performs the following steps:

1. Initialization. Compute lower bound LBR (see Section 3.3) and set LB = 0 and UB =∞.

2. While LB <UB

a. Solution of the master problem. Solve problem BMP. If BMP is infeasible, no feasible

MVPRP solution exists, stop. Otherwise, let (p∗, I∗, y∗, z∗, λ∗, ω∗) be the corresponding

optimal solution of cost z. Set LB = z.

b. Solution of the subproblem. Solve problem BSP; there are two possible outcomes:

i. BSP is infeasible. Add the infeasibility cut (22) to BMP;

ii. BSP admits a feasible and integer solution such that φ(z∗, λ∗) >
∑

t∈T ω
∗
t . Add the

optimality cut (23) to BMP.

Let (p∗, I∗, y∗, z∗, λ∗, s∗, x∗) be the corresponding MVPRP feasible solution of cost

ẑ =
∑

t∈T

(
up∗t + fy∗t + h0I

∗
0t

)
+
∑

t∈T ′
∑

i∈Nc

∑t−1
v=π(i,t) eivtλ

∗
ivt + φ(z∗, λ∗). Set UB =

min{UB, ẑ}.
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At the different iterations of the above algorithm, LB represents a valid lower bound on z(F )

whereas at the end of the algorithm UB = z(F ) (we assume z(F ) =∞ if problem F does not admit

a feasible solution). In Section 3.2, we describe in details how problem BSP is solved at Step 2.b

and how Step 2.b.i is implemented in practice.

The following lemma holds about optimality cut (23).

Lemma 1 The optimality cut (23) satisfies the following two properties:

(i) g(z∗,λ∗)(λ
∗) = φ(z∗, λ∗);

(ii) Any feasible solution (p, I, y, z,λ,ω, s,x) of problem F such that λ 6= λ∗ satisfies∑
t∈T
∑
{i,j}∈E cijxijt ≥ g(z∗,λ∗)(λ).

Proof. Property (i) follows directly from the definition of the optimality cut. Regarding property

(ii), since λ 6= λ∗ we have fλ∗(λ)≥ 1, and

φ(z∗, λ∗)− (φ(z∗, λ∗)−LBR)fλ∗(λ)≤ φ(z∗, λ∗)− (φ(z∗, λ∗)−LBR)≤LBR,

and the inequality
∑

t∈T
∑
{i,j}∈E cijxijt ≥ g(z∗,λ∗)(z) holds since we have

∑
t∈T
∑
{i,j}∈E cijxijt ≥

LBR due to the definition of LBR. �

The following theorem then shows the correctness of the algorithm.

Theorem 1 The logic-based Benders algorithm terminates after finitely many steps.

Proof. Suppose first that the algorithm terminates with a finite solution UB. Clearly, UB is an

upper bound on the solution cost z(F ). Because the algorithm terminated, we have LB =UB and

due to Lemma 1, property (ii), LB is a valid lower bound on the optimal solution cost. Because

the solution corresponding to UB is feasible, it is also optimal. Secondly, since the domain of

BMP variables z and λ is finite, only finitely many subproblems can be defined (and corresponding

Benders infeasibility and optimality cuts), and the optimal value is reached after finitely many

steps. If no feasible MVPRP solution exists, then the algorithm will terminate at Step 2.a after

finitely many steps; this is due, again, to the fact that the domain of BMP variables z and λ is

finite. �

It is worth mentioning that the decomposition approach used to solve the MVPRP strongly

relies on the structural properties of the OU policy, i.e., on the definition of variables λivt that

enables us to formulate and solve the corresponding subproblem in an effective and efficient way.

More precisely, under the OU policy, the set Qi of all possible demand values for a customer i∈Nc

is polynomially sized, being Qi equal to {givt ≤ Q : ∀v ∈ {0} ∪ T,∀t ∈ T ′, t > v}, a property that

is no more valid under the ML policy, being in this case sets Qi pseudo-polynomially sized since
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general nonnegative decision variables representing the quantities delivered to the customers over

the planning horizon are necessary to model the problem. In the case of the ML policy, if we are

willing to sacrifice the property of having only a polynomial number of variables in the master

problem by using variables λiwt instead of variables λivt, where λiwt is equal to 1 if a quantity w is

delivered to customer i in period t, and variables qit =
∑Q

w=0wλiwt are used to denote the quantity

delivered in period t to customer i, then variables λiwt can still be used similarly as variables λivt to

model the subproblem, and derive the corresponding infeasibility and optimality cuts. Nevertheless,

the complexity of solving the master is greatly increased compared to the OU policy.

3.2. Solving the subproblem

In this section, we describe the procedure used at Step 2.b of the exact algorithm to solve problem

BSP defined by the objective function (21) subject to constraints (9)-(12), (16), (17) and (18).

Given a BMP solution (p, I, y, z,λ,ω), problem BSP decomposes into l subproblems, where each

subproblem corresponds to a CVRP. More precisely, the CVRP associated with period t ∈ T ,

denoted CVRP(t), is defined on a complete and undirected graph Gt = (V t,Et) where V t = {0}∪N t
c

is the vertex set and Et is the edge set defined as Et = {{i, j} : i, j ∈ V t, i < j}. Set N t
c is defined

as {i∈Nc : zit = 1}, i.e., is the set of customers serviced in period t, whereas vertex 0 corresponds

to the depot of graph G. A nonnegative cost, ctij = cij, is associated with each edge {i, j}. Each

customer i∈N t
c is associated with a known nonnegative demand, qit = givit, to be delivered where vi

is such that λivit = 1. A set of m identical vehicles, each with capacity Q, is available at the depot.

The problem consists of finding a collection of at most m simple cycles or routes with minimum

cost, defined as the sum of the costs of the edges belonging to the routes, and such that: (i) each

route visits the depot vertex, (ii) each customer vertex is visited by exactly one route, and (iii) the

sum of the demands of the vertices visited by a route does not exceed the vehicle capacity Q.

Solving problem CVRP(t) To solve each problem CVRP(t) we use an exact algorithm based

on the set partitioning formulation. The reader is referred to Poggi and Uchoa (2014), Zhang et al.

(2019) for a review of exact methods based on the set partitioning formulation.

For sake of simplicity, we omit the index t in description of the formulation. Let R be the index

set of all feasible routes and let air be a binary coefficient that is equal to 1 if vertex i∈N t
c belongs

to route r ∈R and takes the value 0 otherwise (note that a0r = 1,∀r ∈R). Each route r ∈R has an

associated cost br, that is equal to the optimal solution cost of the TSP instance defined by route

r. Let ξr be a binary variable that is equal to 1 if and only if route r ∈R belongs to the optimal

solution. The formulation for the CVRP(t) is as follows:

CV RP (t) ωt = min
∑
r∈R

brξr
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s.t.
∑
r∈R

airξr = λivit, ∀i∈N t
c , (24)∑

r∈R

ξr ≤m, (25)

ξr ∈ {0,1}, ∀r ∈R.

Constraints (24) specify that each customer i ∈N t
c must be covered by one route and constraint

(25) requires that at most m routes are selected.

Problem CVRP(t) can be infeasible due to the definition of set N t
c and of the limited number

of vehicles m and, therefore, a corresponding infeasibility cut must be added to BMP. To check

if CVRP(t) admits a feasible solution, we solve the Bin Packing Problem (BPP) instance defined

by |N t
c | items, weights {qit} and with at most m bins of capacity equal to Q. If the resulting BPP

instance is infeasible, then the following infeasibility cut can be defined:

∑
i∈Nc:zit=1

(1−λivit) +
∑

i∈Nc:zit=1

t−1∑
v=π(i,t):λivt=0

λivt ≥ 1,

that cuts off solution {λivt}.

The above cut can be strengthened by observing that if solution {λivt} is infeasible, then also

a solution {λivt} is infeasible whenever λivt ≥ λivt, ∀i ∈ Nc, v = π(i, t), . . . , t − 1, i.e., deliver to

additional customers on the same day will also result in an infeasible solution. Hence, the following

infeasibility cut can be added to BMP: ∑
i∈Nc:zit=1

(1−λivit)≥ 1. (26)

The above cut can be lifted by observing that for a given i∈Nc we have giv1t > giv2t if v1 < v2 < t,

i.e., if the previous visit to customer i is in between [π(i, t), vi−1], then the demand to be delivered

to i at period t will be greater than the demand delivered if the previous visit is at period vi.

Hence, the following strengthened infeasibility cut can be derived:

∑
i∈Nc:zit=1

vi∑
v=π(i,t)

(1−λivt)≥ 1. (27)

If the BPP instance defined above admits a feasible solution, then problem CVRP(t) admits a

finite optimal solution. In the rest of this section, we briefly describe the method used to solve to

optimality problem CVRP(t). The method is based on the route enumeration procedure described

by Baldacci et al. (2008) and on the hybrid strategy used in Pessoa et al. (2009) and Pessoa et al.

(2008). Since solving problem CVRP(t) can be time consuming, we also consider the generation of

valid optimality cuts based on the LP-relaxation of formulation CVRP(t).
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Let u = (u0, ui1 , . . . , ui|Nt
c|

) be a vector of dual variables, where uih , ih ∈ N t
c , and u0 ≤ 0 are

associated with constraints (24) and (25), respectively. The dual of the LP-relaxation of problem

CVRP(t) is as follows:

DCV RP (t) max
∑
i∈Nt

c

λivitui +mu0

s.t.
∑
i∈Nt

c

airui +u0 ≤ br, ∀r ∈R,

ui ∈R, ∀i∈N t
c ,

u0 ≤ 0.

The exact algorithm used to solve problem CVRP(t) to optimality is as follows.

1. Compute a primal bound. Compute a primal bound zUB on the optimal solution cost ωt by

means of a tabu search heuristic based on the algorithm proposed by Gendreau et al. (1994).

2. Solve the LP-relaxation of problem CVRP(t). Solve the LP-relaxation of problem CVRP(t)

by means of standard column generation procedure. Let zLP be the optimal solution cost and

ξ∗ and u∗ be the corresponding primal and dual solutions, respectively. The restricted master

problem is initialized with the set of routes forming the primal solution computed at Step 1

and procedure GENROUTE described in Baldacci et al. (2008) is used to generate feasible

CVRP routes.

3. Add an optimality cut. If zLP >ωt, the following optimality cut is added to BMP:

ωt ≥
∑
i∈Nt

c

u∗iλivit +mu∗0, (28)

and the procedure terminates, otherwise the next step is executed.

4. Route enumeration. Let br = br −
∑

i∈Nt
c
airu

∗
i − u∗0 be the reduced cost associated with route

r ∈R with respect to the dual solution u∗. Using procedure GENROUTE, generate the largest

subset R of the route set R such that:

|R| ≤∆,
max
r∈R
{br} ≤ zUB − zLP .

}

where ∆ is a user-defined parameter, that is set equal to 60000 in the computational experi-

ments reported in Section (6).

5. Solve problem CVRP(t). We have the following two cases:

i) If |R|<∆, solve the reduced problem obtained from problem CVRP(t) by substituting

the route set R with set R by the generic branch-and-cut algorithm of the IBM Cplex

solver (IBM CPLEX 2016).
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ii) If |R|= ∆. Solve problem CVRP(t) using a branch-and-price algorithm where procedure

GENROUTE is again used to generate feasible routes in a column generation fashion and

where the branching on sets strategy is used (Lysgaard et al. 2004).

Optimally cut (28), can be lifted by using the same observation used to lift infeasibility cut (27)

as follows:

ωt ≥
∑
i∈Nt

c

vi∑
v=π(i,t)

u∗iλivt +mu∗0. (29)

Updating problem BMP. Problems CVRP(t), ∀t∈ T , are first checked for feasibility and any

violated infeasibility cut (27) is added to BMP. If at least one infeasibility cut has been detected,

the procedure terminates and the master problem BMP is solved again at the next main iteration.

Otherwise, if all problems CVRP(t), ∀t∈ T , are feasible, then the problems are solved in sequence

(for t = 1, . . . , l) up to Step 3 of the exact algorithm used to solve problems CVRP(t) and any

violated optimality cut (29) is added to BMP. Also in this case, if any violated cut is found, the

procedure terminates and the master problem BMP is solved again at the next main iteration.

If no infeasibility (27) and optimality (29) cuts have been detected, then all problems CVRP(t)

are solved to optimality by executing steps 4 and 5 of the exact algorithm, and Step 2.b.ii of the

exact algorithm for the MVPRP is then executed to check if a new optimality cut (23) must be

added to BMP.

3.3. Computing lower bound LBR on the routing cost

In this section, we describe the relaxation and the bounding procedure used to compute lower

bound LBR introduced to define the optimality cut (23).

Let fit, i ∈Nc, t ∈ T , be a lower bound on the number of visits that customer i must receive

up to period t. For each i ∈Nc and t ∈ T , let qit be the cumulative demand of customer i up to

period t computed as qit = max{0,−Ii0 +
∑t

v=1 div} for t= 1, . . . , l. Values fit, ∀i ∈Nc, t ∈ T , can

be computed as fit = dqit/min{Q,Li}e. In addition, let mL and mU be lower and upper bounds on

the total number of vehicles needed in the planning horizon, respectively. Let q̂i =
∑

t∈T dit − Ii0
be the total quantity of product required by customer i ∈ Nc over the planning horizon. Values

mL and mU can be defined as mL =
⌈

1
Q

∑
i∈Nc

q̂i

⌉
and mU =m · l. The relaxation also requires the

definition of value qi, ∀i ∈Nc, defined as a lower bound on the quantity delivered to customer i

during any visit in the planning horizon that can be computed as qi = mint∈T{dit}, i∈Nc.

We define a route as a least cost simple cycle of graph G passing through depot 0 and such

that the total demand of the customers visited computed using demands {qi} does not exceed the

vehicle capacity Q. Let R̃ be the index set of all routes and let air be a binary coefficient that is

equal to 1 if vertex i∈Nc belongs to route r ∈ R̃ and takes the value 0 otherwise. Each route r ∈ R̃

has an associated routing cost br.
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A valid lower bound on the routing cost of any optimal MVPRP solution is given by the optimal

solution cost of the following integer problem:

(RF ) z(RF ) = min
∑
r∈R̃

brξr

s.t.
∑
r∈R̃

airξr ≥ fil ∀i∈Nc, (30)∑
r∈R̃

ξr ≥mL, (31)∑
r∈R̃

ξr ≤mU , (32)

ξr ≥ 0 integer ,∀r ∈ R̃.

Lower bound LBR is computed by a bounding procedure as a near-optimal dual solution of the

LP-relaxation of problem RF . The procedure differs from standard column generation methods

based on the simplex algorithm as it uses a dual ascent heuristic to solve the master problem (see

Baldacci et al. 2010). The bounding procedure is based on the following theorem.

Theorem 2 Let ui ≥ 0, i∈Nc, vL ≥ 0, and vU ≤ 0 be the dual variables associated with constraints

(30), (31) and (32), respectively. Associate penalties λi ≥ 0, i ∈ Nc, with constraints (30) and

wL ≥ 0, and wU ≤ 0 with constraints (31) and (32), respectively. Let φi, i ∈ Nc, be computed as

φi = qiminr∈R̃i
{(br−λ(r)−wL−wU)/q(r) }, where R̃i ⊆ R̃ is the index set of routes passing through

customer i∈Nc, λ(r) =
∑

i∈Nc
airλi and q(r) =

∑
i∈Nc

airqi. A feasible dual solution (u, vL, uU), of

cost z(λ,wL,wU) can be computed by means of the following expressions:

ui = φi +λi, i∈Nc, vL =wL,and vU =wU . (33)

Proof. Consider the dual constraint corresponding to route r ∈ R̃. Since for each i visited by route

r we have r ∈ R̃i, we have

φi = qi min
r′∈R̃i

{(b′r−λ(r′)−wL−wU)/q(r′)} ≤ qi(br−λ(r)−wL−wU)/q(r).

Hence ∑
i∈Nc

airui + vL + vU ≤
∑
i∈Nc

airqi(br−λ(r)−wL−wU)/q(r) +λ(r) +wL +wU =

q(r)(br−λ(r)−wL−wU)/q(r) +λ(r) +wL +wU = br.�

The optimal solution cost of the following problem

max
λ,wL,wU

{z(λ,wL,wU)} (34)
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provides the best possible lower bound which can be computed by means of Theorem 2. Problem

(34) cannot be solved directly as the computation of solution u, for given penalties λ, wL and

wU , requires the a priori generation of the set R̃. In practice, we use an iterative algorithm which

computes a lower bound as the cost of a suboptimal solution of problem (34) by using a limited

subset of set R̃ and by changing the values of vector λ, wL and wU . At each iteration, the procedure

uses expressions (33) to find a solution (u, vL, vU) of the reduced problem defined on a route subset

of R̃. In addition, subgradient vectors are computed and used to change vector λ and wL and

wU to maximize the value of the lower bound. In the procedure, we further relax the requirement

that a route is a simple cycle of graph G and we extend the route set R̃ to contain ng-routes (see

Baldacci et al. 2011). This relaxation allows us to execute in pseudo polynomial time the pricing

algorithm used to identify the route subset whose dual constraints are violated by the current

solution (u, vL, vU). The above procedure is executed for a fixed number of iterations and lower

bound LBR is set equal to the maximum of the lower bounds computed at the different iterations.

4. Improving the Benders master problem

In this section, we describe valid inequalities to strengthen the Benders master problem. In par-

ticular, Section 4.1 describes two optimality cuts for the master problem used to accelerate the

convergence of the exact algorithm.

Adulyasak et al. (2014a) described a number of valid inequalities to strengthen the LP-relaxation

of formulation F . Among the different valid inequalities described by Adulyasak et al., we added

to the Benders master problem the following inequality:

t′∑
t=1

yt ≥ 1, (35)

where t′ is the earliest period when the plant must produce to prevent a stockout, computed as

t′ = arg min
1≤t≤l

{∑
i∈Nc

max
{

0,
t∑

v=1

div − Ii0
}
− I00 > 0

}
.

We also added to the master problem the following valid inequalities

∑
i∈Nc

t−1∑
v=π(i,t)

givtλivt ≤mQ, ∀t∈ T, (36)

and ∑
i∈Nc

t−1∑
v=π(i,t):givt>dQ/2e

λivt ≤m, ∀t∈ T, (37)

both based on the fact that a limited number of m vehicles are available in each period to serve

the customers.
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It is worth mentioning that, due to constraints (5), imposing integrality on variables λ ensures

the integrality of variables z. Solyalı and Süral (2011) observed that also the vice versa holds. We

conducted preliminary experiments to define the integrality requirements of variables z and λ, and

as a result of our experiments, in the computational experiments reported in Section 6 we decided

to impose integrality requirements on variables λ only.

4.1. Initial set of optimality cuts

In this section, we describe two ways of generating initial optimality cuts for the Benders master

problem. The cuts are based on the following alternative formulation of problem CVRP(t).

Let R̂ be the index set of all feasible routes for period t where the demand qit associated with

customer i, i ∈Nc, belongs to the discrete set of demands {givt : v = π(i, t), . . . , t− 1}, i.e., the set

of all possible demands of customer i visited in period t according to the set {π(i, t), . . . , t− 1} of

its potential previous visiting periods. Let aivr be a binary coefficient that is equal to 1 if and only

if customer i belongs to route r and has associated a demand equal to givt. Problem CVRP(t) can

be formulated as follows:

CV RP (t) ωt = min
∑
r∈R̂

brξr

s.t.
∑
r∈R̂

aivrξr = λivt, ∀i∈Nc, v= π(i, t), . . . , t− 1, (38)

∑
r∈R̂

ξr ≤m, (39)

ξr ∈ {0,1}, ∀r ∈ R̂,

where constraints (38) state that a route servicing customer i with demand givt must be in solution

in period t if and only if λivt is equal to 1, i.e., the previous visit of customer i occurred in period

v < t. The procedure used to derive the optimality cuts is based on the following proposition.

Proposition 1 Let problem P be defined as (P ) min{cx : Ax = b,x ∈ Rn+}, with A ∈ Rm×n, c ∈

Rn, b ∈ Rm, and let D be its dual, i.e., (D) max{wb : wA ≤ c,w ∈ Rm}, where w is the dual

vector associated with constraints Ax= b. Then any feasible dual solution of the following problem,

(P ′)min{cx : aix= bi,∀i∈ I1, aix≥ bi,∀i∈ I2, x∈Rn+}, where I1 and I2 form a partition of the index

set {1, . . . ,m} of the rows of matrix A, ai denotes row i of matrix A, b ∈ Rm, is also a feasible

solution of problem D.

Proof. Let u be a feasible solution of the dual of problem P ′, that is (D′)max{ub : uA≤ c,ui ∈

R,∀i ∈ I1, ui ≥ 0,∀i ∈ I2}. It is easy to see that the solution w of D obtained by setting wi = ui,

i= 1, . . . , n, is a feasible D solution. �
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Let wiv ∈ R, ∀i ∈ Nc, v = π(i, t), . . . , t − 1, and u0 ≤ 0 be the dual variables associated with

constraints (38) and (39), respectively. The dual of the LP-relaxation of CVRP(t) is as follows:

DCV RP (t) max
∑
i∈Nc

t−1∑
v=π(i,t)

λivtwiv +mu0

s.t.
∑
i∈Nc

t−1∑
v=π(i,t)

aivrwiv +u0 ≤ br, ∀r ∈ R̂,

wiv ∈R, ∀i∈Nc, v= π(i, t), . . . , t− 1,

u0 ≤ 0.

Type I cut Type I cut is based on the following LP problem derived from problem CVRP(t):

(T1) min
∑
r∈R̂

brξr

s.t.
∑
r∈R̂

aivrξr ≥ 1, ∀i∈Nc, v= π(i, t), . . . , t− 1, (40)

∑
r∈R̂

ξr ≤m, (41)

ξr ≥ 0, ∀r ∈ R̂.

Let wiv ≥ 0, ∀i∈Nc, v= π(i, t), . . . , t−1, and u0 ≤ 0 be the dual variable associated with constraints

(40) and (41), respectively, and let (w∗, u∗0) be a feasible dual solution of problem T1. Based on

Proposition 1, the following inequality provides a valid optimality cut:

ωt ≥
∑
i∈Nc

t−1∑
v=π(i,t)

w∗ivλivt +mu∗0. (42)

Type II cut Type II cut is based on the LP problem derived from formulation F as follows.

Let R̂t be the index set of all feasible routes for period t where the demand qit associated with

customer i, i∈Nc, belongs the the discrete set of demands {givt : v= π(i, t), . . . , t− 1}. Let aivrt be

a binary coefficient that is equal to 1 if customer i belongs to route r of period t and has associated

a demand equal to givt. The formulation uses binary variable ξrt that is equal to 1 if route r for

period t is in solution, 0 otherwise. The formulation is as follows:

(T2) min
∑
t∈T

(
upt + fyt +h0I0t +

∑
r∈R̂t

brξrt

)
+
∑
t∈T ′

∑
i∈Nc

t−1∑
v=π(i,t)

eivtλivt

s.t. (2)− (4), (6)− (8), (13), (35), (36), (37),∑
r∈R̂t

aivrtξrt = λivt, ∀i∈Nc, t∈ T, v= π(i, t), . . . , t− 1, (43)

∑
r∈R̂t

ξrt ≤m, t∈ T, (44)
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0≤ yt ≤ 1, ∀t∈ T,

0≤ λivt ≤ 1, ∀i∈Nc, v, t∈ T ′,

ξrt ≥ 0, ∀r ∈ R̂t, t∈ T.

Let wivt ∈R, ∀i ∈Nc, t ∈ T , v = π(i, t), . . . , t− 1, and u0 ≤ 0 be the dual variables associated with

constraints (43) and (44), respectively. The dual constraints associated with variables ξrt are

∑
i∈Nc

t−1∑
v=π(i,t)

aivrtwivt +u0 ≤ br, ∀r ∈ R̂t, t∈ T,

and let (w∗, u∗0) be the variables associated with a feasible dual solution of the above formulation.

Based on Proposition 1, the following inequality provides a valid optimality cut:

∑
t∈T

ωt ≥
∑
t∈T

∑
i∈Nc

t−1∑
v=π(i,t)

w∗ivtλivt +mu∗0. (45)

4.2. Computing type I and II cuts

Optimality cuts (42) and (45) are derived by column generation based procedures to compute

optimal dual solutions associated with formulations T1 and T2.

To speed up the computation, the route sets R̂ and R̂t,∀t ∈ T , of formulations T1 and T2,

respectively, are extended with a relaxation of feasible routes easier to compute and based on the

non-elementary route relaxation ng-route proposed by Baldacci et al. (2011), specifically tailored to

consider variable demands associated with the customers. Let Oi ⊆Nc be a set of selected customers

for vertex i such that |Oi| = 8, ∀i ∈ Nc, and Oi contains i and the seven nearest customers to i

according to routing costs {cij}, and let t be a given time period. We define an ng-path (NG,q, i) as

a nonnecessarily elementary path P = (0, i1, . . . , ik−1, ik = i) starting from the plant at time period t,

visiting a subset of customers of total demand equal to q such that NG= Π(P ), ending at customer

i, and such that i /∈Π(P ′), where P ′ = (0, i1, . . . , ik−1). We denote by ψ(NG,q, i) the cost of the least

cost ng-path (NG,q, i) and we define an (NG,q, i)-route to be an (NG,q,0)-path where i is the last

customer visited before arriving at the plant. Functions ψ(NG,q, i) can be computed using dynamic

programming recursions similar to the recursions described by Baldacci et al. (2011) (details are

omitted for sake of brevity) on a state space graph H = (E ,Ψ), where E = {(NG,q, i) : gi t−1 t ≤

q ≤Q, ∀NG⊆Oi s.t. NG 3 i and
∑

j∈NG gj t−1 t ≤ q, ∀i ∈N} , Ψ−1(NG,q, i) = {(NG′, q− qit, j) :

∀NG′ ⊆Oj s.t. NG′ 3 j and NG′∩Oi =NG\{i}, ∀qit ∈ {givt : v= π(i, t), . . . , t−1}, ∀j ∈N,j 6= i},

and Ψ = {(Ψ−1(NG,q, i), (NG,q, i)) : ∀(NG,q, i)∈ E }.
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5. Computational results

This section reports on the computational results of the exact method described in Section 3,

hereafter called “EXM”. Experiments were conducted on both MVPRP and multi-vehicle VMIRP

test instances generated by Adulyasak et al. (2014a) using the set of instances proposed by Archetti

et al. (2007) and Archetti et al. (2011).

Method EXM was coded in Java and executed on a workstation equipped with an Intel(R)

Xeon(R) CPU E5-2623 clocked at 3.00 GHz and 32 GB RAM, running under Linux operating

system in a single-thread mode. ILOG CPLEX 12.6.3 (IBM CPLEX 2016) was used as the LP

solver and the IP solver in EXM.

We compare EXM with the branch-and-cut methods of Adulyasak et al. (2014a) that, to the best

of our knowledge, were the only to consider both the MVPRP and the multi-vehicle VMIRP under

the OU policy. The experiments of Adulyasak et al. were performed on a workstation equipped

with an Intel(R) Xeon(R) CPU clocked at 2.67 GHz and 24 GB RAM. According to the SuperPi

(1M) benchmark (http://www.superpi.net/), an estimate of the single-thread speed of a CPU,

our machine is about 10% faster than that used by Adulyasak et al..

The MVPRP test set consists of instances involving up to 50 customers with time horizons

equal to 3, 6 and 9 time periods. The multi-vehicle VMIRP test set considers a number of cus-

tomers ranging from 5 to 50 with time horizons equal to 3 and 6 periods. A total of 168 MVPRP

instances and 320 multi-vehicle VMIRP instances have been considered in our experiments. For

additional details about the instances considered in this section, the reader is referred to the the

online supplement of Adulyasak et al.. The complete set of instances and the detailed results

of Adulyasak et al. can be downloaded at the the website https://sites.google.com/site/

YossiriAdulyasak/publications.

We compare method EXM with the following three versions of the branch-and-cut algorithm

proposed by Adulyasak et al. (2014a):

• Veh-Ind: the vehicle index formulation running on a single core;

• Non-Veh-Ind: the nonvehicle index formulation running on a single core;

• 8c-Veh-Ind: the vehicle index formulation running on 8 cores.

For methods Veh-Ind and Non-Veh-Ind a time limit of 2 hours was imposed to the execution of

the branch-and-cut algorithm whereas for 8c-Veh-Ind the maximum computing time was set to 12

hours of wall clock time. For method EXM, we imposed a time limit of 2 hours.

In the following, the results obtained on MVPRP instances are given in Section 5.1 whereas

Section 5.2 reports the results obtained on multi-vehicle VMIRP instances. The results obtained

by EXM can be downloaded at the website http://www.computational-logistics.org/orlib/

MVPRP.

http://www.superpi.net/
https://sites.google.com/site/YossiriAdulyasak/publications
https://sites.google.com/site/YossiriAdulyasak/publications
http://www.computational-logistics.org/orlib/MVPRP
http://www.computational-logistics.org/orlib/MVPRP
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Table 1 Summary results on the MVPRP

Veh-Ind Non-Veh-Ind 8c-Veh-Ind EXM
l n #ist #opt t %lb #opt t %lb n̂ #opt t %lb n̂ #opt t %lb

3 10-50 72 28 520.4 96.2 24 262.4 96.9 25 31 2493.2 96.5 40 44 1141.1 99.3
6 10-40 56 32 292.7 99.1 30 362.1 99.3 40 47 5531.5 98.3 40 53 489.0 98.5
9 10-30 40 19 970.8 98.2 13 739.1 99.1 30 28 4473.9 98.1 30 30 456.9 99.1

168 79 67 106 127

5.1. Computational results on the MVPRP

Table 1 summarises the results obtained on MVPRP instances. In the table, the instances are

grouped according to the number of periods and columns “n” and “#ist” report the ranges of the

number of customers and the corresponding number of instances, respectively. For each method,

Table 1 gives the number of instances solved to optimality within the imposed time limit (“#opt”),

the average computing time in seconds of the instances solved to optimality (“t”) and the average

percentage of the final lower bound relative to the best upper bound of the instances not solved

to optimality (“%lb”). For method 8c-Veh-Ind, the computing time refers to the wall clock time.

For methods EXM and 8c-Veh-Ind the table also reports the number of customers of the instance

solved to optimality (“n̂”) having the largest number of customers. The last row of the table reports

the total number of instances solved to optimality by the different methods.

The results obtained can be summarized as follows:

• EXM solved to optimality 21 more instances than 8c-Veh-Ind, that represents the best method

among the three versions proposed by Adulyasak et al. (2014a);

• Taking into account of the speed ratio between the machines used by the EXM and 8c-Veh-

Ind and the fact that 8c-Veh-Ind also uses 8 cores, EXM is on average significantly faster than

8c-Veh-Ind;

• Instances with 40 customers were solved to optimality by EXM involving three periods, 15

customers more than the size of the instances that can be solved by 8c-Veh-Ind;

• The final lower bounds obtained by EXM for the instances not solved to optimality are on

average quite tight.

Tables 2-4 show a detailed comparison of Veh-Ind, Non-Veh-Ind and EXM methods that were all

run on a single core machine. The first four columns of the tables give details about the instances

where column c reports the instance class. For the methods of Adulyasak et al. (2014a), the tables

give the value of the best upper bound computed (“Best ub”), including method 8c-Veh-Ind, the

percentage ratio of the lower bound relative to the best upper bound (“%lb”), and the computing

time in seconds (“t”). For method EXM, the tables give the cost of the best solution found (“ub”),

the value of the final lower bound (“lb”) and the corresponding percentage ratio relative to value

ub (“%lb”), the total computing time in seconds (“t”), the computing time in seconds spent in
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solving the subproblem (“tS”), and the percentage ratio between the total routing cost and value

ub (“%rc”). Boldface numbers are used to indicate the best results among the upper bounds.

In addition, a symbol “n/a” indicates that the corresponding results are not available. For the

detailed results about method 8c-Veh-Ind the reader is referred to https://sites.google.com/

site/YossiriAdulyasak/publications.

The detailed results on the whole set of instances can be summarized as follows:

• In terms of number of instances solved to optimality, EXM outperforms all the three versions

proposed by Adulyasak et al. on instances with three and six periods. For instances with nine

periods, EXM still outperforms method Non-Veh-Ind and cannot solve to optimality one and three

instances solved by Veh-Ind and 8c-Veh-Ind methods, respectively;

• For 36 out of the 41 instances not solved to optimality by EXM, improved upper bounds were

computed by EXM with respect to the upper bounds computed by 8c-Veh-Ind.

• Regarding the number of instances solved to optimality for each instance class, the tables

show that 36, 38, 24 and 29 instances were solved to optimality for classes c = 1,2,3,4, respec-

tively. Therefore, EXM performs particularly well on instances of class 2, characterized by optimal

solutions with a low ratio between the routing cost and the total cost.

5.1.1. Analysis of the different components of EXM. In this section, we analyze the

impact of the different cuts embedded in method EXM. For sake of the comparison, we considered

the 127 MVPRP instances solved to optimality by EXM, and we compare EXM with the following

three versions of the method:

(A) Type I (42) and Type II (45) cuts described in Section 4.1 are not used;

(B) None of the two versions of the LP-based cuts (28) and (29) are added during the solution of

the subproblem;

(C) The lifted cuts (27) and (29) are not used but their non-lifted versions (26) and (28) are used

instead.

For the different versions, we used the same time limit and settings used for EXM.

Table 5 gives an overview of the results obtained. In the table, the instances are grouped according

to the number of periods, and columns “opt” and “%opt” report the number of instances solved

to optimality by the different versions and the corresponding percentage ratios computed over

the total number of instances considered for each group of instances, respectively. The table then

shows the number of optimality cuts (23) (“#cuts(23)”), the number of lifted infeasibility cuts (27)

(“#cuts(27)”), the number of LP-based lifted optimality cuts (29) (“#cuts(29)”), and the number

of executions of Step 5 of the algorithm used to solve problems CV RP (t), i.e., the number of times

CPLEX is invoked to solve the reduced problems (“#CV RP (t)”). The next three columns report

https://sites.google.com/site/YossiriAdulyasak/publications
https://sites.google.com/site/YossiriAdulyasak/publications
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Table 2 Detailed results on the MVPRP instances with three periods

n l m c

Adulyasak et al. (2014)
EXMVeh-Ind Non-Veh-Ind

Best ub %lb t %lb t ub lb %lb t tS %rc

10 3 2 1 36636 100.0 0.3 100.0 0.2 36636 36636.0 100.0 3.5 0.4 6.7
10 3 2 2 254526 100.0 0.1 100.0 0.0 254526 254526.0 100.0 3.2 0.0 1.0
10 3 2 3 46422 100.0 0.9 100.0 0.3 46422 46422.0 100.0 2.8 0.1 26.4
10 3 2 4 26687 100.0 0.3 100.0 0.1 26687 26687.0 100.0 3.0 0.0 9.2

10 3 3 1 37226 100.0 0.5 100.0 0.2 37226 37226.0 100.0 2.4 0.2 8.2
10 3 3 2 255116 100.0 0.2 100.0 0.1 255116 255116.0 100.0 2.3 0.0 1.2
10 3 3 3 49371 100.0 1.1 100.0 0.3 49371 49371.0 100.0 2.2 0.1 30.8
10 3 3 4 27247 100.0 0.5 100.0 0.1 27247 27247.0 100.0 2.3 0.0 11.1

15 3 2 1 56309 100.0 14.0 100.0 38.8 56309 56309.0 100.0 12.0 0.6 7.1
15 3 2 2 406122 100.0 14.7 100.0 20.5 406122 406122.0 100.0 12.6 0.8 1.2
15 3 2 3 71239 100.0 18.0 100.0 41.1 71239 71239.0 100.0 11.8 0.4 25.8
15 3 2 4 42978 100.0 23.7 100.0 116.4 42978 42978.0 100.0 15.2 2.9 9.2

15 3 3 1 57339 100.0 10.4 100.0 46.8 57339 57339.0 100.0 6.8 0.3 8.4
15 3 3 2 409891 100.0 11.0 100.0 187.0 409891 409891.0 100.0 8.3 0.8 1.4
15 3 3 3 76406 100.0 25.0 100.0 152.8 76406 76406.0 100.0 6.8 0.3 31.1
15 3 3 4 44293 100.0 24.0 100.0 551.0 44293 44293.0 100.0 7.8 0.7 10.7

20 3 2 1 57205 100.0 31.8 100.0 132.5 57205 57205.0 100.0 42.9 2.2 5.9
20 3 2 2 394852 100.0 107.3 100.0 63.0 394852 394852.0 100.0 46.0 0.9 0.9
20 3 2 3 69745 100.0 14.0 100.0 79.0 69745 69745.0 100.0 38.6 1.8 22.4
20 3 2 4 40893 100.0 85.3 100.0 91.6 40893 40893.0 100.0 46.4 3.2 7.6

20 3 3 1 57863 100.0 204.0 100.0 160.3 57863 57863.0 100.0 21.2 1.6 7.0
20 3 3 2 395363 100.0 185.9 100.0 90.7 395363 395363.0 100.0 20.4 1.1 1.0
20 3 3 3 74065 100.0 1700.4 100.0 4052.5 74065 74065.0 100.0 26.7 3.5 27.3
20 3 3 4 41550 100.0 679.7 100.0 471.5 41550 41550.0 100.0 23.9 3.1 9.7

25 3 2 1 78180 100.0 966.2 99.8 7200.0 78180 78180.0 100.0 182.5 21.5 5.4
25 3 2 2 564868 100.0 4639.4 100.0 7200.0 564868 564868.0 100.0 104.9 27.6 0.8
25 3 2 3 94420 100.0 1031.6 99.1 7200.0 94420 94420.0 100.0 549.4 30.0 21.3
25 3 2 4 58528 100.0 4782.1 99.2 7200.0 58528 58528.0 100.0 1696.3 114.5 7.5

25 3 3 1 79151 99.3 7200.0 99.6 7200.0 79151 79151.0 100.0 288.8 15.3 6.6
25 3 3 2 565800 99.7 7200.0 99.8 7200.0 565800 565800.0 100.0 48.9 7.4 1.1
25 3 3 3 99139 96.2 7200.0 97.6 7200.0 99139 99139.0 100.0 1067.2 25.1 25.1
25 3 3 4 59535 98.3 7200.0 98.4 7200.0 59426 59426.0 100.0 2737.2 69.5 8.9

30 3 3 1 82570 99.0 7200.0 99.0 7200.0 82361 82361.0 100.0 5088.8 435.8 6.0
30 3 3 2 586405 99.6 7200.0 99.7 7200.0 585391 585391.0 100.0 188.8 38.2 1.0
30 3 3 3 102234 95.5 7200.0 95.9 7200.0 101707 101197.9 99.5 7200.3 590.5 23.4
30 3 3 4 61945 97.1 7200.0 97.4 7200.0 61010 60924.7 99.9 7200.8 1203.1 8.1

30 3 4 1 83738 98.1 7200.0 98.5 7200.0 83316 83284.1 100.0 7200.3 292.5 7.1
30 3 4 2 587571 99.6 7200.0 99.7 7200.0 586933 586933.0 100.0 205.3 102.1 1.1
30 3 4 3 109845 91.4 7200.0 93.3 7200.0 106835 105952.8 99.2 7200.3 1043.5 27.1
30 3 4 4 63156 96.4 7200.0 96.8 7200.0 62145 61961.8 99.7 7200.3 1651.6 9.5

35 3 3 1 96528 96.6 7200.0 96.8 7200.0 94349 94349.0 100.0 6840.5 756.6 5.9
35 3 3 2 661386 99.4 7200.0 99.5 7200.0 658885 658885.0 100.0 339.3 101.2 0.9
35 3 3 3 122256 90.4 7200.0 91.1 7200.0 116478 115231.3 98.9 7200.2 756.0 23.5
35 3 3 4 70948 96.3 7200.0 96.5 7200.0 69440 69440.0 100.0 6163.5 929.4 7.9

35 3 4 1 98239 95.4 7200.0 96.0 7200.0 95296 95296.0 100.0 6049.2 785.9 6.9
35 3 4 2 661447 99.5 7200.0 99.6 7200.0 660203 660203.0 100.0 317.5 171.5 1.2
35 3 4 3 128029 88.8 7200.0 90.6 7200.0 121137 121137.0 100.0 6716.9 833.4 26.6
35 3 4 4 72571 94.9 7200.0 95.5 7200.0 70467 70307.6 99.8 7200.2 1090.8 9.1

40 3 3 1 127280 98.8 7200.0 98.8 7200.0 126821 126821.0 100.0 5148.8 340.4 5.0
40 3 3 2 898014 99.6 7200.0 99.6 7200.0 896020 896020.0 100.0 3899.1 1160.1 0.8
40 3 3 3 153029 94.8 7200.0 95.1 7200.0 151526 149860.7 98.9 7200.2 1676.2 19.8
40 3 3 4 92922 97.3 7200.0 97.5 7200.0 91929 91428.7 99.5 7200.3 2215.0 6.9

40 3 4 1 129067 97.8 7200.0 98.1 7200.0 128157 128034.2 99.9 7200.3 544.1 6.0
40 3 4 2 901594 99.2 7200.0 99.3 7200.0 897145 897145.0 100.0 2207.4 900.3 0.9
40 3 4 3 164191 89.5 7200.0 90.6 7200.0 158049 156334.9 98.9 7200.3 2107.6 23.2
40 3 4 4 95927 94.7 7200.0 95.2 7200.0 93097 92761.8 99.6 7200.3 1895.6 8.0

45 3 3 1 141856 98.3 7200.0 98.6 7200.0 141265 141075.0 99.9 7200.3 571.8 5.0
45 3 3 2 1025062 99.3 7200.0 99.4 7200.0 1020302 1019985.0 100.0 7200.3 2611.2 0.8
45 3 3 3 172851 92.9 7200.0 93.2 7200.0 169147 167377.4 99.0 7200.3 2627.6 19.7
45 3 3 4 106750 96.5 7200.0 96.8 7200.0 105017 104445.3 99.5 7200.2 2332.9 6.9

45 3 4 1 144963 96.8 7200.0 97.1 7200.0 142958 142507.3 99.7 7200.3 1433.0 6.2
45 3 4 2 1027296 99.1 7200.0 99.2 7200.0 1021791 1021528.5 100.0 7200.3 3337.9 0.9
45 3 4 3 183037 88.7 7200.0 90.4 7200.0 176584 174930.9 99.1 7200.3 1607.8 23.2
45 3 4 4 108419 95.5 7200.0 96.1 7200.0 106684 106047.1 99.4 7200.3 2428.5 8.1

50 3 3 1 139164 98.0 7200.0 98.1 7200.0 138235 137491.7 99.5 7200.3 5122.7 5.8
50 3 3 2 980022 99.4 7200.0 99.4 7200.0 976479 975639.3 99.9 7200.3 6509.8 0.8
50 3 3 3 173118 91.4 7200.0 92.1 7200.0 172256 164668.0 95.6 7203.7 6839.8 23.4
50 3 3 4 103031 96.1 7200.0 96.3 7200.0 100972 100239.7 99.3 7200.2 3985.2 7.5

50 3 4 1 141178 97.2 7200.0 97.5 7200.0 139950 139143.0 99.4 7200.2 2340.3 6.8
50 3 4 2 983352 99.2 7200.0 99.2 7200.0 978174 977274.8 99.9 7200.3 2319.0 1.0
50 3 4 3 189474 85.9 7200.0 87.2 7200.0 178483 173194.1 97.0 7201.6 6875.9 26.4
50 3 4 4 104222 95.8 7200.0 96.3 7200.0 102748 102007.8 99.3 7200.2 2467.8 9.1
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Table 3 Detailed results on the MVPRP instances with six periods

n l m c

Adulyasak et al. (2014)
EXM

Veh-Ind Non-Veh-Ind
Best ub %lb t %lb t ub lb %lb t tS %rc

10 6 2 1 38669 100.0 0.4 100.0 0.2 38669 38669.0 100.0 5.7 0.1 7.3
10 6 2 2 222269 100.0 0.4 100.0 0.2 222269 222269.0 100.0 5.8 0.1 1.3
10 6 2 3 50025 100.0 0.5 100.0 0.2 50025 50025.0 100.0 6.6 0.2 28.4
10 6 2 4 23453 100.0 0.7 100.0 0.4 23453 23453.0 100.0 6.6 0.9 12.1

10 6 3 1 38856 100.0 0.6 100.0 0.2 38856 38856.0 100.0 4.4 0.1 7.8
10 6 3 2 222456 100.0 1.2 100.0 0.1 222456 222456.0 100.0 4.5 0.1 1.4
10 6 3 3 50963 100.0 1.4 100.0 0.2 50963 50963.0 100.0 4.4 0.1 29.7
10 6 3 4 23640 100.0 2.1 100.0 0.3 23640 23640.0 100.0 4.7 0.1 12.8

15 6 2 1 54845 100.0 5.7 100.0 2.3 54845 54845.0 100.0 25.7 1.6 7.8
15 6 2 2 307565 100.0 5.3 100.0 2.3 307565 307565.0 100.0 26.0 1.6 1.4
15 6 2 3 71661 100.0 9.9 100.0 44.9 71661 71661.0 100.0 28.0 1.0 27.1
15 6 2 4 32475 100.0 13.4 100.0 91.8 32475 32475.0 100.0 33.1 6.1 12.7

15 6 3 1 55726 100.0 27.9 100.0 10.9 55726 55726.0 100.0 12.4 1.2 9.2
15 6 3 2 308446 100.0 28.1 100.0 13.7 308446 308446.0 100.0 12.7 1.7 1.7
15 6 3 3 75004 100.0 150.3 100.0 176.3 75004 75004.0 100.0 16.2 3.6 31.0
15 6 3 4 33178 100.0 89.0 100.0 386.4 33178 33178.0 100.0 17.2 5.1 14.7

20 6 2 1 64447 100.0 25.7 100.0 120.1 64447 64447.0 100.0 146.2 2.9 6.6
20 6 2 2 361987 100.0 16.4 100.0 26.7 361987 361987.0 100.0 152.8 3.1 1.2
20 6 2 3 80568 100.0 38.3 100.0 483.4 80568 80568.0 100.0 174.4 5.3 24.8
20 6 2 4 37798 100.0 14.2 100.0 496.2 37798 37798.0 100.0 151.0 2.0 10.6

20 6 3 1 65111 100.0 304.7 100.0 656.6 65111 65111.0 100.0 72.0 8.0 7.6
20 6 3 2 362651 100.0 151.4 100.0 23.0 362651 362651.0 100.0 69.7 6.0 1.4
20 6 3 3 83347 100.0 408.5 100.0 417.8 83347 83347.0 100.0 62.0 3.2 27.3
20 6 3 4 38355 100.0 214.1 100.0 91.2 38355 38355.0 100.0 64.5 1.8 11.8

25 6 2 1 80401 100.0 425.9 100.0 2160.3 80401 80401.0 100.0 208.2 10.3 6.1
25 6 2 2 430861 100.0 244.4 100.0 880.3 430861 430861.0 100.0 199.8 8.6 1.1
25 6 2 3 99385 100.0 445.0 100.0 988.0 99385 99385.0 100.0 288.7 31.3 23.7
25 6 2 4 45070 100.0 199.8 100.0 2180.9 45070 45070.0 100.0 220.2 14.3 10.4

25 6 3 1 81155 99.7 7200.0 99.6 7200.0 81155 81155.0 100.0 106.6 21.9 7.1
25 6 3 2 431615 100.0 7200.0 99.9 7200.0 431615 431615.0 100.0 100.3 18.4 1.3
25 6 3 3 102924 98.1 7200.0 98.8 7200.0 102924 102924.0 100.0 194.0 28.8 25.1
25 6 3 4 45743 99.4 7200.0 99.3 7200.0 45743 45743.0 100.0 105.5 10.3 12.0

30 6 3 1 81067 100.0 651.9 100.0 621.2 81067 81067.0 100.0 579.1 160.9 6.9
30 6 3 2 458257 100.0 775.6 100.0 987.7 458257 458257.0 100.0 462.1 48.2 1.2
30 6 3 3 102824 100.0 3683.1 99.1 7200.0 102824 102824.0 100.0 1500.3 964.9 26.0
30 6 3 4 47649 100.0 1429.1 99.7 7200.0 47649 47649.0 100.0 611.8 123.2 11.2

30 6 4 1 81697 99.8 7200.0 99.8 7200.0 81697 81697.0 100.0 219.0 18.6 7.6
30 6 4 2 458887 100.0 7200.0 100.0 7200.0 458887 458887.0 100.0 208.3 15.3 1.3
30 6 4 3 106086 97.0 7200.0 97.9 7200.0 106086 106086.0 100.0 456.7 120.5 28.4
30 6 4 4 48296 99.0 7200.0 99.2 7200.0 48296 48296.0 100.0 310.7 54.7 12.6

35 6 3 1 99205 n/a n/a n/a n/a 99205 99205.0 100.0 653.4 34.2 6.2
35 6 3 2 570355 n/a n/a n/a n/a 570355 570355.0 100.0 695.8 42.0 1.1
35 6 3 3 123688 n/a n/a n/a n/a 123688 123688.0 100.0 1324.3 561.3 24.2
35 6 3 4 59046 n/a n/a n/a n/a 59046 59046.0 100.0 931.3 219.2 10.1

35 6 4 1 100225 n/a n/a n/a n/a 100225 100225.0 100.0 513.3 242.8 7.1
35 6 4 2 571385 n/a n/a n/a n/a 571375 571375.0 100.0 607.6 335.1 1.3
35 6 4 3 129846 n/a n/a n/a n/a 129922 126773.6 97.6 7201.1 6925.8 27.9
35 6 4 4 59913 n/a n/a n/a n/a 59878 59878.0 100.0 3084.2 1144.0 11.6

40 6 3 1 133248 n/a n/a n/a n/a 133248 133248.0 100.0 1695.5 815.4 5.0
40 6 3 2 734268 n/a n/a n/a n/a 734268 734268.0 100.0 1295.8 455.0 0.9
40 6 3 3 160896 n/a n/a n/a n/a 162069 159057.1 98.1 7206.3 6483.8 21.7
40 6 3 4 74693 n/a n/a n/a n/a 74621 74621.0 100.0 6284.7 4519.1 9.4

40 6 4 1 135077 n/a n/a n/a n/a 134281 134281.0 100.0 431.5 79.6 5.7
40 6 4 2 736464 n/a n/a n/a n/a 735301 735301.0 100.0 485.6 112.4 1.0
40 6 4 3 168262 n/a n/a n/a n/a 164762 164626.6 99.9 7200.3 435.5 23.0
40 6 4 4 76062 n/a n/a n/a n/a 75505 75505.0 100.0 1037.9 459.2 10.6
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Table 4 Detailed results on the MVPRP instances with nine periods

n l m c

Adulyasak et al. (2014)
EXM

Veh-Ind Non-Veh-Ind
Best ub %lb t %lb t ub lb %lb t tS %rc

10 9 2 1 63064 100.0 4.3 100.0 1.9 63064 63064.0 100.0 11.7 1.6 7.9
10 9 2 2 381394 100.0 5.3 100.0 2.1 381394 381394.0 100.0 11.9 1.8 1.3
10 9 2 3 82683 100.0 31.7 100.0 8.6 82683 82683.0 100.0 16.1 1.9 29.3
10 9 2 4 40774 100.0 19.9 100.0 5.6 40774 40774.0 100.0 15.9 2.3 12.9

10 9 3 1 63822 100.0 18.6 100.0 20.2 63822 63822.0 100.0 6.9 0.4 9.2
10 9 3 2 382152 100.0 31.9 100.0 21.6 382152 382152.0 100.0 6.6 0.5 1.5
10 9 3 3 86095 100.0 124.3 100.0 58.4 86095 86095.0 100.0 11.6 1.3 32.2
10 9 3 4 41379 100.0 126.3 100.0 41.9 41379 41379.0 100.0 10.2 1.7 13.3

15 9 2 1 91148 100.0 118.2 100.0 3440.1 91148 91148.0 100.0 49.7 1.6 7.6
15 9 2 2 540698 100.0 295.9 100.0 2734.2 540698 540698.0 100.0 46.8 1.6 1.3
15 9 2 3 118746 100.0 2160.8 98.4 7200.0 118746 118746.0 100.0 470.6 6.9 28.0
15 9 2 4 57753 100.0 973.7 99.3 7200.0 57753 57753.0 100.0 126.1 4.7 12.0

15 9 3 1 92632 100.0 3112.6 99.7 7200.0 92632 92632.0 100.0 23.2 2.5 9.1
15 9 3 2 542182 100.0 4935.5 100.0 7200.0 542182 542182.0 100.0 22.5 1.9 1.5
15 9 3 3 125383 95.7 7200.0 97.6 7200.0 125383 125383.0 100.0 327.2 6.1 32.1
15 9 3 4 59386 98.5 7200.0 98.5 7200.0 59386 59386.0 100.0 1935.6 21.4 13.9

20 9 2 1 103809 100.0 833.3 100.0 1854.9 103809 103809.0 100.0 306.1 8.2 7.0
20 9 2 2 617889 100.0 153.9 100.0 70.2 617889 617889.0 100.0 396.3 3.1 1.2
20 9 2 3 131101 100.0 792.5 99.2 7200.0 131101 130587.8 99.6 7200.3 347.0 25.3
20 9 2 4 65859 100.0 583.7 99.7 7200.0 65859 65859.0 100.0 502.2 95.0 12.2

20 9 3 1 104704 99.7 7200.0 99.9 7200.0 104704 104704.0 100.0 138.2 4.6 8.4
20 9 3 2 618902 100.0 4121.9 100.0 1348.8 618902 618902.0 100.0 135.4 13.0 1.4
20 9 3 3 136443 97.3 7200.0 97.9 7200.0 136286 135522.4 99.4 7200.2 42.1 28.5
20 9 3 4 66830 99.6 7200.0 99.4 7200.0 66830 66830.0 100.0 575.5 59.7 13.5

25 9 2 1 129172 n/a n/a n/a n/a 129172 129172.0 100.0 388.6 18.1 5.8
25 9 2 2 749311 n/a n/a n/a n/a 749311 749311.0 100.0 364.0 10.5 1.1
25 9 2 3 158573 n/a n/a n/a n/a 158684 157712.2 99.4 7200.3 768.4 22.9
25 9 2 4 79476 n/a n/a n/a n/a 79496 79300.9 99.8 7200.3 216.0 10.6

25 9 3 1 130594 n/a n/a n/a n/a 130550 130550.0 100.0 515.3 14.6 7.0
25 9 3 2 750481 n/a n/a n/a n/a 750481 750481.0 100.0 166.6 14.3 1.2
25 9 3 3 167271 n/a n/a n/a n/a 165430 163824.1 99.0 7200.3 329.6 25.4
25 9 3 4 81012 n/a n/a n/a n/a 80761 80272.2 99.4 7200.3 128.1 11.8

30 9 3 1 137463 n/a n/a n/a n/a 137463 137463.0 100.0 931.8 29.3 6.3
30 9 3 2 828543 n/a n/a n/a n/a 828529 828529.0 100.0 2958.5 331.8 1.2
30 9 3 3 174270 n/a n/a n/a n/a 173868 171090.1 98.4 7200.6 722.7 25.7
30 9 3 4 87607 n/a n/a n/a n/a 87456 86875.7 99.3 7200.2 567.2 11.1

30 9 4 1 139909 n/a n/a n/a n/a 138887 138887.0 100.0 1906.6 143.5 7.4
30 9 4 2 830800 n/a n/a n/a n/a 829697 829697.0 100.0 1328.2 174.1 1.3
30 9 4 3 182839 n/a n/a n/a n/a 181650 177116.8 97.5 7200.5 348.8 27.9
30 9 4 4 89684 n/a n/a n/a n/a 88541 88043.4 99.4 7200.3 447.1 12.3

computing times about the solution of the BPPs used to generate infeasibility cuts (“tBPP”), the

heuristic used to compute the upper bounds zUB in solving problems CV RP (t) (“theu”), and the

time spent in solving the subproblem (“tsub”). The last column reports the total computing time

(“ttot”). Regarding the number of cuts and the computing times, the table reports average values,

and the last line of each table section dedicated to a version, reports the total number of instances

solved to optimality and average values over the different columns. Moreover, for version (C) of

EXM, the table reports the average numbers of non-lifted cuts added instead of the average number

of lifted cuts.



Zhang, Luo, Baldacci, and Lim: Benders Decomposition for MVPRP with OU Policy
Article submitted to Transportation Science; manuscript no. TS-2018-0173 27

Table 5 Analysis of the different components of EXM on the MVPRP

Version l #inst opt %opt #cuts(23) #cuts(27) #cuts(29) #CV RP (t) tBPP theu tsub ttot

EXM 3 44 44 100.0 13.5 234.8 1009.4 4.8 55.6 2.4 156.6 1141.1

6 53 53 100.0 253.6 2.9 425.0 21.2 4.2 1.6 196.8 489.0

9 30 30 100.0 245.4 27.1 730.6 20.3 5.7 1.0 32.6 456.9

127 168.5 89.0 699.7 15.3 22.4 1.7 144.1 702.9

A (no type 3 44 39 88.6 15.1 353.5 1729.2 4.3 106.8 3.8 191.5 1450.5

I and II cuts) 6 53 51 96.2 183.9 3.3 418.0 23.5 3.9 1.2 491.7 543.0

9 30 27 90.0 328.0 35.0 895.0 26.0 9.0 1.3 37.8 1034.8

117 159.5 132.1 985.0 17.4 40.8 2.2 280.5 973.6

B (no optimality 3 44 26 59.1 6664.7 569.0 - 2096.1 182.4 10.9 1059.1 3183.4

cuts (28), (29)) 6 53 32 60.4 2592.4 6.1 - 915.7 19.0 3.3 2401.9 3315.7

9 30 6 20.0 9975.1 91.6 - 4510.4 96.8 8.9 968.7 5814.1

64 5747.2 221.3 2173.8 94.0 7.2 1598.1 3860.0

#cuts(26) #cuts(28)

C (no lifted cuts 3 44 40 90.9 13.2 232.3 994.6 4.1 52.6 2.4 105.1 1168.7

(27), (29)) 6 53 51 96.2 287.7 3.1 677.8 26.9 5.8 2.3 242.6 728.7

9 30 25 83.3 401.3 35.6 1280.6 31.2 10.3 1.7 53.6 1752.7

116 219.4 90.2 929.9 20.1 23.1 2.2 150.3 1123.0

The results obtained can be analyzed as follows.

• The initialization of EXM using Type I and Type II cuts and the use of the lifted versions

of infeasibility and LP-based cuts are quite effective, since versions (A) and (C) cannot solve to

optimality 10 and 11 instances solved by EXM, respectively.

• EXM takes particularly advantage in using LP-based cuts (29). Indeed, version (B) solved to

optimality only 64 instances over the 127 instances considered. As shown by Table 5, if the LP-

based cuts are not used, the number of optimality cuts (23) and the number of times the IP solver

of CPLEX is invoked (and the corresponding average computing times) increase considerately.

In summary, all the different cuts embedded in EXM are particulary effective in solving MVPRP

instances.

Concerning version (A) of EXM, we also executed EXM by selectively disabling the use of

Type I and Type II cuts. As a result, EXM initialized with only Type I cut solved to optimality

116 instances whereas EXM with only Type II cut solved 117 instances. Finally, the percentage

ratio of lower bound LBR on the routing cost used in the definition of the optimality cuts (23),

computed using the routing costs of the 127 instances considered, is equal to 55.0%, hence resulting

particularly weak. An explanation for its quality is due to the definition of values {qi}, i.e., the

lower bounds on the quantity to be delivered. Nevertheless, its computing time is negligible, being

on average equal to 9.2 seconds, and our aim in computing LBR was to quickly compute an initial

lower bound to properly define the optimality cuts (23).
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Table 6 Summary results on the multi-vehicle VMIRP

Veh-Ind Non-Veh-Ind 8c-Veh-Ind EXM
l class n #ist n̂ #opt t %lb n̂ #opt t %lb n̂ #opt t %lb n̂ #opt t %lb

3 Low 5-50 100 40 59 670.4 89.5 30 45 530.2 94.6 50 78 4279.1 88.9 30 50 892.5 86.5
3 High 5-50 100 40 60 745.0 95.8 40 47 808.1 97.6 50 77 3599.7 95.4 30 47 668.0 95.1
6 Low 5-30 60 15 24 671.3 93.8 10 16 622.8 94.8 25 37 4610.9 87.2 10 20 358.7 91.4
6 High 5-30 60 15 24 658.1 96.4 10 16 617.2 96.9 25 37 4651.1 93.1 10 20 326.8 95.0

320 167 124 229 137

5.2. Computational results on the multi-vehicle VMIRP

In this section, we report on the results obtained by EXM on multi-vehicle VMIRP, a special case

of the MVPRP defined as follows:

• The fixed production setup cost f and the unit production cost u are set equal to 0;

• All variables y are set equal to 1, i.e., yt = 1, ∀t∈ T ;

• The production quantity in period t is fixed to Bt, i.e., pt = Bt, ∀t ∈ T , where Bt is the

production quantity made available in each period. The additional constraints Iot ≥Bt, ∀t∈ T , are

added to formulation F and the term
∑

i∈Nc
hiIi0 is added to the objective function of F .

As assumed by Adulyasak et al. (2014a), the production at the plant takes place before delivery

and the deliveries at the customers are executed at the beginning of the time period.

Table 6 summarizes the results obtained whereas tables (7)-(10) give the details about methods

Veh-Ind, Non-Veh-Ind and EXM. The notation used in the tables of this section is as described in

the previous section about the MVPRP. Moreover, in Table 6 the instances are grouped according

to the type of inventory costs (Low or Hight) and in tables (7)-(10) column “id” is used to denote

the instance identifier. Concerning method EXM, a symbol “-” indicates that EXM runs out of

memory or no feasible solution was found by EXM.

We run EXM on the whole set of multi-vehicle VMIRP instances generated by Adulyasak et al..

In particular, we also considered 20 instances involving 30 customers and six periods (with both low

and hight inventory costs) that were not run by Adulyasak et al. with any of their branch-and-cut

versions.

The results about the multi-vehicle VMIRP can be analysed as follows.

• In terms of the number of instances solved to optimality, EXM outperforms method Non-Veh-

Ind but it is outperformed by the methods based on the vehicle index formulation (Veh-Ind and

8c-Veh-Ind).

• The detailed results show that EXM is not dominated by method Veh-Ind as it can solve four

instances to optimality that were not solved by Veh-Ind within the imposed time limit. In addition,

EXM computed 20 new improved upper bounds with respect to the best upper bounds computed

by method 8c-Veh-Ind.
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• EXM scales particularly well with the number of periods. Indeed, new upper and lower bounds

for the instances with 30 customers and six periods were computed by EXM.

The detailed results about the MVPRP and the multi-vehicle VMIRP show that the average

ratios between the routing cost and the total cost of the best solutions obtained (column “%rc”)

are equal to 11.3% and 66.7%, respectively. This is due to the cost structure of the instances and,

in particular, to the fact that in the multi-vehicle VMIRP setup and production costs are not

considered. The results obtained show that EXM is particular efficient on MVPRP instances. A

possible explanation for this behaviour is due to the fact that, since setup, production and inventory

costs dominate the routing cost, the master problem provides a tight lower bound on the optimal

solution cost, thus speeding up the convergence of EXM.

6. Conclusions and future research

We presented an exact Benders decomposition algorithm for the Multi-Vehicle Production Routing

Problem (MVPRP) with Order-Up-to level inventory replenishment policy and for its special case,

the multi-vehicle Vendor-Managed Inventory Routing Problem (VMIRP).

We demonstrated through extensive computational experiments that our approach outperforms

the state-of-the-art method for the MVPRP. In particular, the method could solve to optimality

MVPRP instances with up to 40 customers, three periods, and three vehicles, that were not solved

to optimality by the state-of-the-art method. Moreover, our approach is also competitive on multi-

vehicle VMIRP instances and could compute new lower and upper bounds for difficult multi-vehicle

VMIRP instances with up to 30 customers, six periods, and four vehicles.

The proposed method, due to its decomposition structure, can be easily adapted to deal with

other intra-route constraints, simply by taking into account of such constraints in the route gener-

ation phase. Future research will therefore investigate the generalization of the model described in

this paper to deal with the complexity of real-world production routing applications, such as time

windows, distance constraints, etc.
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Table 7 Results on multi-vehicle VMIRP instances with three periods and low inventory costs

n l m id

Adulyasak et al. (2014)
EXM

Veh-Ind Non-Veh-Ind
Best ub %lb t %lb t ub lb %lb t tS %rc

5 3 2 1 1396.33 100.0 0.1 100.0 0.1 1396.33 1396.33 100.0 0.7 0.0 93.2
5 3 2 2 1437.90 100.0 0.0 100.0 0.0 1437.90 1437.90 100.0 0.7 0.0 93.8
5 3 2 3 2468.94 100.0 0.1 100.0 0.3 2468.94 2468.94 100.0 0.8 0.0 94.4
5 3 2 4 1717.43 100.0 0.0 100.0 0.1 1717.43 1717.43 100.0 0.7 0.0 96.2
5 3 2 5 1224.63 100.0 0.0 100.0 0.0 1224.63 1224.63 100.0 0.7 0.0 89.1
5 3 3 1 1540.57 100.0 0.1 100.0 0.1 1540.57 1540.57 100.0 0.6 0.0 93.9
5 3 3 2 1720.83 100.0 0.1 100.0 0.1 1720.83 1720.83 100.0 0.5 0.0 94.8
5 3 3 3 3503.33 100.0 0.0 100.0 0.1 3503.33 3503.33 100.0 0.7 0.0 96.0
5 3 3 4 2552.79 100.0 0.0 100.0 0.1 2552.79 2552.79 100.0 0.5 0.0 97.5
5 3 3 5 1682.44 100.0 0.0 100.0 0.1 1682.44 1682.44 100.0 0.6 0.0 92.0

10 3 2 1 2468.22 100.0 1.8 100.0 1.7 2468.22 2468.22 100.0 4.6 1.5 87.6
10 3 2 2 3166.19 100.0 2.9 100.0 3.5 3166.19 3166.19 100.0 6.4 2.9 91.8
10 3 2 3 2449.10 100.0 1.2 100.0 1.6 2449.10 2449.10 100.0 3.4 0.5 90.1
10 3 2 4 2859.45 100.0 2.7 100.0 5.4 2859.45 2859.45 100.0 5.8 3.0 91.4
10 3 2 5 2486.41 100.0 1.6 100.0 2.6 2486.41 2486.41 100.0 5.3 2.2 87.2
10 3 3 1 2914.09 100.0 4.1 100.0 5.2 2914.09 2914.09 100.0 2.6 0.6 89.5
10 3 3 2 3641.19 100.0 7.1 100.0 3.3 3641.19 3641.19 100.0 2.4 0.5 92.9
10 3 3 3 2734.10 100.0 2.4 100.0 1.3 2734.10 2734.10 100.0 2.0 0.2 91.1
10 3 3 4 3318.99 100.0 7.2 100.0 10.8 3318.99 3318.99 100.0 4.2 2.2 92.6
10 3 3 5 2704.71 100.0 3.3 100.0 1.5 2704.71 2704.71 100.0 3.0 0.6 88.3
15 3 2 1 2631.53 100.0 7.3 100.0 8.5 2631.53 2631.53 100.0 19.8 2.4 85.5
15 3 2 2 2907.34 100.0 5.2 100.0 36.5 2907.34 2907.34 100.0 27.5 5.9 87.4
15 3 2 3 3081.56 100.0 4.9 100.0 5.3 3081.56 3081.56 100.0 18.0 1.4 86.1
15 3 2 4 2745.98 100.0 3.6 100.0 24.3 2745.98 2746.98 100.0 23.1 6.1 88.6
15 3 2 5 2862.50 100.0 6.1 100.0 58.9 2862.50 2862.50 100.0 24.5 6.4 89.2
15 3 3 1 2928.16 100.0 12.5 100.0 109.3 2928.16 2928.16 100.0 9.7 1.6 87.1
15 3 3 2 3217.61 100.0 17.3 100.0 88.2 3217.61 3217.61 100.0 19.0 6.3 88.5
15 3 3 3 3401.56 100.0 20.3 100.0 36.3 3401.56 3401.56 100.0 10.7 1.9 87.4
15 3 3 4 2961.29 100.0 10.6 100.0 12.2 2961.29 2961.29 100.0 12.2 3.2 89.5
15 3 3 5 3302.02 100.0 35.0 100.0 170.4 3302.02 3302.02 100.0 17.7 6.3 90.6
20 3 2 1 3398.29 100.0 128.1 100.0 278.4 3398.29 3398.29 100.0 364.0 123.5 85.2
20 3 2 2 2925.55 100.0 18.9 100.0 21.9 2925.55 2925.55 100.0 105.6 29.0 82.4
20 3 2 3 3401.56 100.0 50.1 100.0 128.0 3401.56 3401.56 100.0 117.6 28.7 84.1
20 3 2 4 3837.54 100.0 64.7 99.2 7200.0 3837.54 3837.54 100.0 243.5 71.8 89.0
20 3 2 5 3957.49 100.0 73.9 100.0 1331.3 3957.49 3957.49 100.0 1998.8 356.8 85.7
20 3 3 1 3809.57 100.0 337.3 100.0 1552.4 3809.57 3809.57 100.0 976.4 94.5 86.7
20 3 3 2 3063.77 100.0 67.4 100.0 95.0 3063.77 3063.77 100.0 49.0 12.6 83.2
20 3 3 3 3805.55 100.0 359.3 100.0 5953.2 3805.55 3805.55 100.0 309.6 46.0 85.8
20 3 3 4 4447.93 100.0 899.0 95.4 7200.0 4447.93 4447.93 100.0 1697.7 147.0 90.4
20 3 3 5 4581.99 100.0 882.3 97.4 7200.0 4581.99 4581.99 100.0 5524.8 242.8 87.7
25 3 2 1 3569.23 100.0 25.7 100.0 164.8 3569.23 3569.23 100.0 5061.4 4598.9 83.4
25 3 2 2 3904.97 100.0 447.8 100.0 1798.3 3904.97 3904.97 100.0 2678.3 1253.8 83.7
25 3 2 3 4006.11 100.0 93.3 100.0 434.5 4006.11 4006.11 100.0 1332.8 984.2 82.2
25 3 2 4 3510.77 100.0 32.6 100.0 100.5 3510.77 3510.77 100.0 5254.6 5015.2 82.8
25 3 2 5 3857.48 100.0 39.5 100.0 20.0 3857.48 3857.48 100.0 608.6 194.5 79.3
25 3 3 1 3927.38 100.0 219.8 100.0 1521.0 3927.38 3927.38 100.0 3224.5 262.4 84.9
25 3 3 2 4278.43 100.0 1609.5 97.0 7200.0 4278.43 4278.43 100.0 5016.6 524.7 85.1
25 3 3 3 4658.61 100.0 1890.2 98.9 7200.0 4658.61 4613.86 99.0 7200.3 370.4 84.7
25 3 3 4 3936.55 100.0 238.8 98.3 7200.0 3936.55 3936.55 100.0 697.4 171.0 84.7
25 3 3 5 4550.44 100.0 1218.0 100.0 5702.7 4550.44 4392.76 96.5 7200.3 2061.4 82.5
30 3 3 1 4697.49 100.0 2956.4 97.1 7200.0 - 4623.26 - 7201.7 7037.8 -
30 3 3 2 4296.11 100.0 334.6 100.0 4168.2 4296.11 4187.66 97.5 7200.3 1420.9 80.3
30 3 3 3 4272.41 100.0 2256.8 98.7 7200.0 4272.41 4272.41 100.0 2995.8 373.7 77.1
30 3 3 4 4238.99 100.0 4683.7 95.7 7200.0 4238.99 4139.71 97.7 7200.3 2951.0 83.2
30 3 3 5 3987.55 100.0 5038.9 93.8 7200.0 3987.55 3962.85 99.4 7200.3 794.2 80.7
30 3 4 1 5297.66 89.1 7200.0 92.7 7200.0 5318.99 5136.46 96.6 7200.3 1976.9 81.9
30 3 4 2 4634.58 100.0 4129.9 97.4 7200.0 4634.58 4614.09 99.6 7200.3 1575.1 81.8
30 3 4 3 4569.05 92.3 7200.0 95.6 7200.0 4569.05 4544.04 99.5 7200.3 221.7 78.6
30 3 4 4 4701.86 87.2 7200.0 93.8 7200.0 4915.80 4595.86 93.5 7201.0 4912.1 85.6
30 3 4 5 4348.99 90.3 7200.0 92.8 7200.0 4348.99 4348.99 100.0 6138.5 334.7 82.3
35 3 3 1 4473.28 100.0 2808.1 95.5 7200.0 4480.41 4385.81 97.9 7200.4 2684.0 79.7
35 3 3 2 4438.80 100.0 1903.8 97.2 7200.0 4637.46 4334.65 93.5 7202.9 6501.0 83.4
35 3 3 3 5249.48 98.8 7200.0 97.6 7200.0 - 5085.47 - 7200.38 7061.6 -
35 3 3 4 4678.54 88.1 7200.0 92.8 7200.0 5689.84 4427.38 77.8 7206.84 7024.0 86.1
35 3 3 5 4326.68 95.1 7200.0 97.5 7200.0 5766.29 4268.16 74.0 7205.17 7002.6 85.5
35 3 4 1 4980.59 87.7 7200.0 92.4 7200.0 5026.70 4841.08 96.3 7200.22 3398.9 81.9
35 3 4 2 4872.03 95.9 7200.0 94.5 7200.0 5291.20 4757.27 89.9 7210.38 7011.6 85.4
35 3 4 3 6029.70 86.9 7200.0 89.4 7200.0 5939.48 5687.89 95.8 7200.26 6653.0 81.3
35 3 4 4 5169.84 80.4 7200.0 90.4 7200.0 5102.75 4936.52 96.7 7200.25 4619.8 84.5
35 3 4 5 4958.01 83.5 7200.0 91.1 7200.0 4873.60 4763.18 97.7 7203.13 7067.2 82.8
40 3 3 1 5009.71 93.7 7200.0 92.7 7200.0 - 4974.97 - 7206.97 7010.0 -
40 3 3 2 4742.39 100.0 6590.6 100.0 7200.0 6303.64 4574.25 72.6 7201.65 6590.4 86.7
40 3 3 3 4747.71 96.4 7200.0 97.6 7200.0 6071.46 4642.03 76.5 7208.33 7003.0 82.1
40 3 3 4 4580.04 96.2 7200.0 93.9 7200.0 4743.90 4423.22 93.2 7208.7 6722.4 81.6
40 3 3 5 4612.63 99.1 7200.0 95.2 7200.0 5760.28 4558.94 79.1 7205.2 7007.2 81.7
40 3 4 1 6025.70 74.8 7200.0 83.4 7200.0 5916.45 5504.21 93.0 7200.4 6890.5 81.9
40 3 4 2 5622.76 81.4 7200.0 86.5 7200.0 7858.53 5156.13 65.6 7207.7 6974.5 89.3
40 3 4 3 5136.06 90.0 7200.0 92.9 7200.0 6013.13 4984.39 82.9 7209.1 7002.6 81.8
40 3 4 4 4855.93 85.9 7200.0 95.2 7200.0 4941.75 4787.40 96.9 7202.7 6664.8 82.3
40 3 4 5 5213.30 87.3 7200.0 90.5 7200.0 5355.59 5051.54 94.3 7208.8 6940.8 80.3
45 3 3 1 5039.51 n/a n/a n/a n/a - 4885.92 - 7204.8 7004.1 -
45 3 3 2 5296.04 n/a n/a n/a n/a - 5155.97 - 7204.8 7004.1 -
45 3 3 3 4754.62 n/a n/a n/a n/a 5360.59 4622.71 86.2 7207.0 6913.1 77.3
45 3 3 4 5458.59 n/a n/a n/a n/a 7922.57 5229.54 66.0 7204.6 5352.3 86.4
45 3 3 5 4374.87 n/a n/a n/a n/a 7280.24 4305.89 59.1 7202.2 7011.2 85.1
45 3 4 1 5699.41 n/a n/a n/a n/a - 5414.06 - 7202.8 7074.1 -
45 3 4 2 6618.06 n/a n/a n/a n/a - 5801.74 - 7204.8 7004.1 -
45 3 4 3 5183.57 n/a n/a n/a n/a 6436.43 4952.71 76.9 7206.1 6477.4 81.1
45 3 4 4 6092.59 n/a n/a n/a n/a 7451.44 5988.91 80.4 7202.1 7001.7 85.6
45 3 4 5 4649.79 n/a n/a n/a n/a 5211.14 4594.77 88.2 7204.8 7001.1 79.0
50 3 3 1 5827.17 n/a n/a n/a n/a 7669.07 5570.50 72.6 7207.4 7008.9 84.7
50 3 3 2 6115.28 n/a n/a n/a n/a - 5811.92 - 7201.3 4248.5 -
50 3 3 3 5590.78 n/a n/a n/a n/a - 5291.11 - 7201.3 6248.5 -
50 3 3 4 5703.97 n/a n/a n/a n/a - 5589.50 - 7209.0 6094.6 -
50 3 3 5 6052.93 n/a n/a n/a n/a 7724.84 5458.56 70.7 7207.2 6047.5 83.5
50 3 4 1 7267.52 n/a n/a n/a n/a - 6317.92 - 7205.3 6609.7 -
50 3 4 2 7008.96 n/a n/a n/a n/a - 6449.77 - 7200.2 6613.5 -
50 3 4 3 6566.59 n/a n/a n/a n/a 7857.83 5792.32 73.7 7203.1 6042.9 84.6
50 3 4 4 6748.76 n/a n/a n/a n/a - 6388.25 - 7202.2 6455.5 -
50 3 4 5 6764.57 n/a n/a n/a n/a 8506.97 6152.39 72.3 7201.9 6963.8 85.0
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Table 8 Results on multi-vehicle VMIRP instances with three periods and high inventory costs

n l m id

Adulyasak et al. (2014)
EXM

Veh-Ind Non-Veh-Ind
Best ub %lb t %lb t ub lb %lb t tS %rc

5 3 2 1 2266.61 100.0 0.1 100.0 0.1 2266.61 2266.61 100.0 0.8 0.0 57.4
5 3 2 2 2229.38 100.0 0.0 100.0 0.0 2229.38 2229.38 100.0 0.7 0.0 60.5
5 3 2 3 3698.48 100.0 0.1 100.0 0.2 3698.48 3698.48 100.0 0.9 0.0 63.0
5 3 2 4 2302.44 100.0 0.1 100.0 0.0 2302.44 2302.44 100.0 0.8 0.0 71.8
5 3 2 5 2413.72 100.0 0.0 100.0 0.0 2413.72 2413.72 100.0 0.8 0.0 45.2
5 3 3 1 2414.03 100.0 0.1 100.0 0.1 2414.03 2414.03 100.0 0.6 0.0 59.9
5 3 3 2 2511.05 100.0 0.1 100.0 0.1 2511.05 2511.05 100.0 0.6 0.0 65.0
5 3 3 3 4753.03 100.0 0.0 100.0 0.1 4753.03 4753.03 100.0 0.8 0.0 70.8
5 3 3 4 3132.21 100.0 0.0 100.0 0.1 3132.21 3132.21 100.0 0.7 0.0 79.5
5 3 3 5 2875.58 100.0 0.0 100.0 0.1 2875.58 2875.58 100.0 0.7 0.0 53.8

10 3 2 1 5263.22 100.0 1.4 100.0 0.9 5263.22 5263.22 100.0 6.1 2.9 41.1
10 3 2 2 5464.48 100.0 2.9 100.0 3.2 5464.48 5464.48 100.0 9.2 5.2 53.2
10 3 2 3 4630.08 100.0 1.1 100.0 1.2 4630.08 4630.08 100.0 4.7 1.3 47.6
10 3 2 4 5031.00 100.0 3.2 100.0 7.2 5031.00 5031.00 100.0 5.6 2.2 52.3
10 3 2 5 5318.75 100.0 1.7 100.0 2.5 5318.75 5318.75 100.0 6.1 2.6 41.0
10 3 3 1 5714.31 100.0 3.7 100.0 5.7 5714.31 5714.31 100.0 2.6 0.3 45.6
10 3 3 2 5938.08 100.0 7.3 100.0 3.4 5938.08 5938.08 100.0 3.2 0.8 57.0
10 3 3 3 4919.04 100.0 1.8 100.0 1.3 4919.04 4919.04 100.0 2.5 0.3 50.6
10 3 3 4 5482.86 100.0 9.3 100.0 15.5 5482.86 5482.86 100.0 4.1 1.7 56.1
10 3 3 5 5539.77 100.0 2.6 100.0 2.8 5539.77 5539.77 100.0 2.9 0.7 43.1
15 3 2 1 6108.84 100.0 7.4 100.0 38.9 6108.84 6108.84 100.0 21.3 2.8 36.8
15 3 2 2 6211.69 100.0 4.6 100.0 51.4 6211.69 6211.69 100.0 28.3 6.2 40.9
15 3 2 3 6946.05 100.0 10.9 100.0 8.7 6946.05 6946.05 100.0 21.1 2.2 38.2
15 3 2 4 5551.36 100.0 4.2 100.0 44.0 5551.36 5551.36 100.0 22.8 5.4 44.0
15 3 2 5 5623.74 100.0 4.6 100.0 44.7 5623.74 5623.74 100.0 29.3 7.8 45.4
15 3 3 1 6375.95 100.0 11.6 100.0 45.2 6375.95 6375.95 100.0 12.9 3.8 40.0
15 3 3 2 6533.72 100.0 17.5 100.0 23.5 6533.72 6533.72 100.0 26.9 11.7 43.6
15 3 3 3 7265.38 100.0 14.0 100.0 32.7 7265.38 7265.38 100.0 12.7 3.1 40.9
15 3 3 4 5776.88 100.0 6.7 100.0 6.9 5776.88 5776.88 100.0 14.7 3.4 45.9
15 3 3 5 6068.46 100.0 32.7 100.0 87.3 6068.46 6068.46 100.0 22.7 9.1 49.3
20 3 2 1 7958.82 100.0 130.1 100.0 407.3 7958.82 7958.82 100.0 307.7 90.9 36.4
20 3 2 2 7502.09 100.0 19.5 100.0 21.5 7502.09 7502.09 100.0 73.5 13.9 32.2
20 3 2 3 8228.35 100.0 46.0 100.0 504.1 8228.35 8228.35 100.0 120.1 32.3 34.8
20 3 2 4 7650.75 100.0 60.2 100.0 6873.2 7650.75 7650.75 100.0 248.1 80.6 44.6
20 3 2 5 9027.46 100.0 59.1 100.0 1024.2 9027.46 9027.46 100.0 1588.0 274.8 37.6
20 3 3 1 8398.63 100.0 603.0 100.0 2058.1 8398.63 8398.63 100.0 1301.8 95.8 39.3
20 3 3 2 7641.45 100.0 138.8 100.0 128.4 7641.45 7641.45 100.0 40.2 9.5 33.4
20 3 3 3 8624.22 100.0 407.4 100.0 7200.0 8624.22 8624.22 100.0 331.4 65.0 37.9
20 3 3 4 8270.08 100.0 811.2 96.7 7200.0 8270.08 8270.08 100.0 1508.7 179.3 48.6
20 3 3 5 9656.83 100.0 892.3 100.0 3909.0 9656.83 9656.83 100.0 4731.1 240.4 41.6
25 3 2 1 8923.37 100.0 55.3 100.0 80.5 8923.37 8923.37 100.0 1010.3 553.3 33.4
25 3 2 2 9674.07 100.0 319.0 100.0 7152.1 9674.07 9674.07 100.0 2701.5 959.4 33.8
25 3 2 3 10368.83 100.0 160.4 100.0 781.7 11104.06 10206.02 91.9 7200.8 7091.7 36.7
25 3 2 4 8908.31 100.0 33.4 100.0 63.1 8908.31 8908.31 100.0 940.6 708.9 32.7
25 3 2 5 11037.88 100.0 44.2 100.0 26.5 11037.88 11037.88 100.0 4371.6 3786.4 27.8
25 3 3 1 9277.31 100.0 234.9 100.0 1954.7 9277.31 9277.31 100.0 3860.0 286.3 36.1
25 3 3 2 10048.88 100.0 1753.3 98.7 7200.0 10048.88 10043.67 99.9 7200.2 542.8 36.4
25 3 3 3 11022.72 100.0 1857.7 99.1 7200.0 11022.72 10982.11 99.6 7200.2 385.4 35.8
25 3 3 4 9334.96 100.0 233.0 99.1 7200.0 9334.96 9334.96 100.0 1149.9 319.5 35.7
25 3 3 5 11715.70 100.0 1527.6 100.0 3195.1 11715.70 11549.05 98.6 7200.2 3420.8 32.1
30 3 3 1 13390.84 100.0 2296.7 98.9 7200.0 14392.44 13320.81 92.6 7201.3 7050.4 33.2
30 3 3 2 11911.63 100.0 435.5 100.0 5334.6 11911.63 11835.94 99.4 7200.2 806.3 29.0
30 3 3 3 13003.14 100.0 1524.9 99.1 7200.0 13003.14 12995.29 99.9 7200.2 194.0 25.4
30 3 3 4 10619.39 100.0 4296.7 98.0 7200.0 10619.39 10527.89 99.1 7200.2 1500.9 33.2
30 3 3 5 10911.59 100.0 6708.9 97.6 7200.0 10911.59 10884.44 99.8 7200.2 796.1 29.5
30 3 4 1 13976.21 94.8 7200.0 97.3 7200.0 13976.21 13830.47 99.0 7200.2 1396.7 31.0
30 3 4 2 12252.36 100.0 2110.7 99.0 7200.0 12252.36 12224.56 99.8 7200.2 447.9 30.9
30 3 4 3 13324.90 97.6 7200.0 98.8 7200.0 13324.90 13293.43 99.8 7200.2 317.3 26.9
30 3 4 4 11027.66 95.5 7200.0 97.4 7200.0 11049.15 10931.71 98.9 7200.2 3393.2 36.4
30 3 4 5 11270.83 95.8 7200.0 97.1 7200.0 11270.83 11270.83 100.0 6844.6 283.1 31.9
35 3 3 1 12764.43 99.7 7200.0 98.4 7200.0 13530.55 12694.97 93.8 7202.0 6962.7 32.1
35 3 3 2 11352.68 100.0 817.2 98.8 7200.0 11449.35 11211.09 97.9 7203.2 6970.3 32.9
35 3 3 3 15278.37 100.0 5074.4 99.4 7200.0 15566.09 15149.00 97.3 7200.3 6619.8 28.6
35 3 3 4 11746.39 96.9 7200.0 97.1 7200.0 11873.09 11399.20 96.0 7205.1 7009.2 33.8
35 3 3 5 11881.10 98.5 7200.0 99.3 7200.0 11946.74 11821.76 99.0 7200.3 2379.2 29.9
35 3 4 1 13426.45 93.8 7200.0 96.0 7200.0 13296.40 13140.71 98.8 7200.2 1841.2 30.9
35 3 4 2 11786.79 99.0 7200.0 97.8 7200.0 12352.07 11560.36 93.6 7204.9 7007.2 38.0
35 3 4 3 16151.59 94.8 7200.0 95.7 7200.0 16696.15 15725.52 94.2 7227.3 7016.8 33.1
35 3 4 4 12295.65 91.7 7200.0 95.5 7200.0 12160.17 11944.50 98.2 7200.2 2744.1 35.4
35 3 4 5 12701.76 92.7 7200.0 94.9 7200.0 12448.27 12263.81 98.5 7203.0 7010.6 32.7
40 3 3 1 14733.71 97.4 7200.0 97.9 7200.0 - 14707.52 - 7207.6 6560.4 -
40 3 3 2 12267.02 100.0 6515.8 100.0 4039.2 13699.71 11987.27 87.5 7202.7 6724.4 39.0
40 3 3 3 14525.45 99.5 7200.0 99.1 7200.0 15289.70 14235.11 93.1 7206.1 6897.4 29.0
40 3 3 4 12401.25 99.3 7200.0 98.0 7200.0 12571.11 12178.95 96.9 7206.0 7044.1 31.1
40 3 3 5 14143.72 100.0 5384.6 98.5 7200.0 16256.25 14121.72 86.9 7208.1 7002.3 35.1
40 3 4 1 16057.77 89.7 7200.0 91.7 7200.0 15701.07 15232.85 97.0 7202.3 7017.6 31.2
40 3 4 2 13022.49 93.0 7200.0 95.6 7200.0 12940.30 12568.74 97.1 7202.8 6929.8 35.4
40 3 4 3 14898.49 96.3 7200.0 98.0 7200.0 15005.16 14677.13 97.8 7200.2 1786.5 27.7
40 3 4 4 12725.05 93.8 7200.0 97.7 7200.0 12736.43 12571.78 98.7 7200.6 3602.3 32.1
40 3 4 5 14763.54 95.6 7200.0 96.3 7200.0 14721.19 14504.47 98.5 7200.5 6002.3 28.1
45 3 3 1 15327.90 n/a n/a n/a n/a 17526.21 15259.30 87.1 7200.5 6909.8 34.9
45 3 3 2 14818.70 n/a n/a n/a n/a - 14679.11 - 7202.3 6824.8 -
45 3 3 3 15744.72 n/a n/a n/a n/a 16425.69 15476.52 94.2 7205.7 6387.6 25.9
45 3 3 4 15015.64 n/a n/a n/a n/a 15811.58 14598.18 92.3 7208.1 6918.2 32.8
45 3 3 5 14305.11 n/a n/a n/a n/a 16490.40 13981.35 84.8 7200.6 6227.5 33.4
45 3 4 1 15997.64 n/a n/a n/a n/a 17327.67 15448.13 89.2 7207.4 6815.7 34.0
45 3 4 2 16025.69 n/a n/a n/a n/a - 15293.57 - 7205.5 6943.3 -
45 3 4 3 16252.17 n/a n/a n/a n/a 16267.81 15875.39 97.6 7200.2 3264.7 24.9
45 3 4 4 15857.40 n/a n/a n/a n/a 15601.74 15209.43 97.5 7200.2 5890.2 31.9
45 3 4 5 14720.37 n/a n/a n/a n/a 15591.13 14379.41 92.2 7201.6 6765.3 29.3
50 3 3 1 16518.46 n/a n/a n/a n/a 18176.81 16386.24 90.1 7206.6 6546.1 35.4
50 3 3 2 16571.41 n/a n/a n/a n/a - 16146.52 - 7206.3 4739.8 -
50 3 3 3 16467.13 n/a n/a n/a n/a 18804.66 15857.25 84.3 7206.6 7026.1 35.9
50 3 3 4 17867.88 n/a n/a n/a n/a - 17747.74 - 7202.9 5688.6 -
50 3 3 5 17174.43 n/a n/a n/a n/a 18942.46 16764.88 88.5 7209.7 6645.4 32.9
50 3 4 1 17485.21 n/a n/a n/a n/a - 16692.66 - 7203.7 7064.6 -
50 3 4 2 18045.92 n/a n/a n/a n/a 18147.11 16737.64 92.2 7208.1 7093.7 35.8
50 3 4 3 17325.20 n/a n/a n/a n/a 18871.26 16486.18 87.4 7208.2 5915.2 36.2
50 3 4 4 19139.80 n/a n/a n/a n/a - 18494.81 - 7201.1 7026.8 -
50 3 4 5 18405.06 n/a n/a n/a n/a 18303.42 17360.96 94.9 7202.2 6051.2 30.5
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Table 9 Results on multi-vehicle VMIRP instances with six periods and low inventory costs

n l m id

Adulyasak et al. (2014)
EXM

Veh-Ind Non-Veh-Ind
Best ub %lb t %lb t ub lb %lb t tS %rc

5 6 2 1 4286.37 100.0 2.2 100.0 7.0 4286.37 4286.37 100.0 1.5 0.3 93.4
5 6 2 2 3869.33 100.0 3.1 100.0 12.9 3869.33 3869.33 100.0 2.0 0.5 93.2
5 6 2 3 5997.42 100.0 0.6 100.0 1.2 5997.42 5997.42 100.0 1.0 0.1 96.0
5 6 2 4 3814.27 100.0 1.2 100.0 1.3 3814.27 3814.27 100.0 1.2 0.2 94.5
5 6 2 5 3062.01 100.0 0.5 100.0 0.8 3062.01 3062.01 100.0 1.3 0.2 92.0

5 6 3 1 5258.03 100.0 0.3 100.0 1.5 5258.03 5258.03 100.0 0.9 0.0 94.6
5 6 3 2 4881.51 100.0 0.1 100.0 0.1 4881.51 4881.51 100.0 0.9 0.1 94.7
5 6 3 3 10555.98 100.0 0.0 100.0 1.5 10555.98 10555.98 100.0 1.4 0.1 97.7
5 6 3 4 5028.36 100.0 0.3 100.0 14.2 5028.36 5028.36 100.0 1.0 0.1 95.8
5 6 3 5 4392.47 100.0 0.2 100.0 0.9 4392.47 4392.47 100.0 1.3 0.0 94.3

10 6 2 1 5923.33 100.0 181.3 96.4 7200.0 5923.33 5923.33 100.0 177.7 11.4 91.9
10 6 2 2 6927.65 100.0 621.0 100.0 598.2 6927.65 6927.65 100.0 2199.4 10.2 94.6
10 6 2 3 5533.68 100.0 118.2 100.0 723.2 5533.68 5533.68 100.0 511.2 12.0 92.2
10 6 2 4 6463.46 100.0 79.7 100.0 2585.2 6463.46 6463.46 100.0 293.4 16.2 93.5
10 6 2 5 5441.76 100.0 97.8 100.0 371.9 5441.76 5441.76 100.0 1391.5 6.0 89.8

10 6 3 1 7535.66 95.8 7200.0 91.5 7200.0 7535.66 7535.66 100.0 176.1 11.9 93.6
10 6 3 2 8594.37 100.0 6709.7 100.0 7200.0 8594.37 8594.37 100.0 290.0 15.4 95.7
10 6 3 3 6604.50 100.0 655.8 100.0 2816.0 6604.50 6604.50 100.0 829.1 9.4 93.5
10 6 3 4 7891.84 100.0 2387.7 95.7 7200.0 7891.84 7891.84 100.0 1031.9 15.1 94.7
10 6 3 5 6253.99 100.0 1571.1 100.0 2828.9 6253.99 6253.99 100.0 260.5 8.1 91.2

15 6 2 1 6143.34 100.0 654.2 96.1 7200.0 6165.38 6001.02 97.3 7200.3 33.7 88.1
15 6 2 2 6382.11 100.0 203.4 98.9 7200.0 6383.11 6222.30 97.5 7200.2 69.1 88.8
15 6 2 3 7239.38 100.0 1062.1 95.2 7200.0 7239.38 7095.81 98.0 7200.4 48.4 88.6
15 6 2 4 6465.37 100.0 720.6 97.0 7200.0 6494.35 6260.01 96.4 7200.2 92.3 91.2
15 6 2 5 6669.99 100.0 1040.3 94.7 7200.0 6875.90 6413.55 93.3 7200.2 137.1 91.7

15 6 3 1 7137.36 92.9 7200.0 91.9 7200.0 7304.36 6942.96 95.1 7200.2 99.8 90.0
15 6 3 2 7559.90 95.7 7200.0 93.1 7200.0 7649.50 7292.03 95.3 7200.2 104.9 90.6
15 6 3 3 8465.21 92.8 7200.0 91.4 7200.0 8539.91 8310.14 97.3 7200.2 104.4 90.3
15 6 3 4 7604.86 94.0 7200.0 92.8 7200.0 7618.82 7352.53 96.5 7200.2 84.6 92.5
15 6 3 5 8046.60 91.9 7200.0 92.4 7200.0 8224.07 7681.01 93.4 7200.2 218.1 93.1

20 6 2 1 7704.14 n/a n/a n/a n/a 8086.34 7330.65 90.7 7200.2 2426.7 88.8
20 6 2 2 6569.33 n/a n/a n/a n/a 6675.70 6379.43 95.6 7200.3 452.5 85.6
20 6 2 3 7781.52 n/a n/a n/a n/a 8013.64 7532.06 94.0 7200.2 401.2 89.4
20 6 2 4 8746.71 n/a n/a n/a n/a 9128.25 8294.62 90.9 7200.3 1596.3 91.4
20 6 2 5 8968.73 n/a n/a n/a n/a 9377.61 8479.43 90.4 7204.4 1681.6 89.7

20 6 3 1 9690.78 n/a n/a n/a n/a 9860.50 8842.56 89.7 7200.2 1181.9 90.8
20 6 3 2 7477.33 n/a n/a n/a n/a 7527.54 7040.63 93.5 7200.2 236.8 87.2
20 6 3 3 9335.74 n/a n/a n/a n/a 9080.12 8574.27 94.4 7200.2 181.9 90.6
20 6 3 4 10989.06 n/a n/a n/a n/a 10846.92 10028.15 92.5 7200.2 433.2 92.7
20 6 3 5 11826.34 n/a n/a n/a n/a 11357.43 10557.12 93.0 7200.2 4056.8 91.5

25 6 2 1 7892.30 n/a n/a n/a n/a 8657.11 7573.02 87.5 7200.2 6616.6 89.2
25 6 2 2 8667.63 n/a n/a n/a n/a 9780.01 8260.99 84.5 7202.8 6873.2 89.5
25 6 2 3 8950.41 n/a n/a n/a n/a 9754.76 8739.19 89.6 7200.2 6788.5 88.1
25 6 2 4 7954.64 n/a n/a n/a n/a 8549.26 7814.72 91.4 7202.0 6990.8 88.5
25 6 2 5 9049.47 n/a n/a n/a n/a 9374.68 8587.22 91.6 7202.8 6451.6 86.3

25 6 3 1 9024.73 n/a n/a n/a n/a 9375.30 8420.46 89.8 7200.2 1541.7 90.0
25 6 3 2 11136.70 n/a n/a n/a n/a 10430.03 9662.85 92.6 7200.3 3034.9 90.1
25 6 3 3 11320.78 n/a n/a n/a n/a 14146.16 10398.27 73.5 7200.3 7000.5 91.8
25 6 3 4 9233.14 n/a n/a n/a n/a 9338.73 8760.84 93.8 7200.3 1917.9 89.5
25 6 3 5 11760.03 n/a n/a n/a n/a 11037.56 10346.64 93.7 7200.3 1671.5 88.4

30 6 3 1 n/a n/a n/a n/a n/a 14115.87 10493.40 74.3 7202.1 6910.6 88.4
30 6 3 2 n/a n/a n/a n/a n/a 10323.19 9334.39 90.4 7202.3 6924.4 86.7
30 6 3 3 n/a n/a n/a n/a n/a 10449.54 9428.62 90.2 7208.8 5297.7 83.8
30 6 3 4 n/a n/a n/a n/a n/a 10719.44 9183.27 85.7 7200.2 6954.6 89.5
30 6 3 5 n/a n/a n/a n/a n/a 10071.78 9058.20 89.9 7203.5 6262.8 87.1

30 6 4 1 n/a n/a n/a n/a n/a 13066.99 12092.09 92.5 7200.3 3482.9 87.4
30 6 4 2 n/a n/a n/a n/a n/a 11914.42 10647.63 89.4 7200.3 2290.7 88.5
30 6 4 3 n/a n/a n/a n/a n/a 11269.56 10341.72 91.8 7200.2 1508.8 85.0
30 6 4 4 n/a n/a n/a n/a n/a 11881.20 10446.30 87.9 7200.7 6699.0 90.5
30 6 4 5 n/a n/a n/a n/a n/a 11407.76 10232.09 89.7 7200.2 2292.0 88.6
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Table 10 Results on multi-vehicle VMIRP instances with six periods and high inventory costs

n l m id

Adulyasak et al. (2014)
EXM

Veh-Ind Non-Veh-Ind
Best ub %lb t %lb t ub lb %lb t tS %rc

5 6 2 1 6888.73 100.0 2.0 100.0 3.5 6888.73 6888.73 100.0 1.7 0.3 58.1
5 6 2 2 6202.65 100.0 2.4 100.0 15.5 6202.65 6202.65 100.0 2.3 0.5 58.3
5 6 2 3 8183.76 100.0 1.0 100.0 1.2 8183.76 8183.76 100.0 1.0 0.1 70.3
5 6 2 4 5726.62 100.0 1.1 100.0 1.3 5726.62 5726.62 100.0 1.1 0.1 62.9
5 6 2 5 5234.05 100.0 0.5 100.0 0.6 5234.05 5234.05 100.0 1.1 0.1 53.8

5 6 3 1 7864.79 100.0 0.2 100.0 0.8 7864.79 7864.79 100.0 0.8 0.0 63.2
5 6 3 2 7174.59 100.0 0.1 100.0 0.1 7174.59 7174.59 100.0 0.8 0.1 64.4
5 6 3 3 12780.57 100.0 0.0 100.0 0.3 12780.57 12780.57 100.0 0.8 0.1 80.7
5 6 3 4 6933.86 100.0 0.3 100.0 18.0 6933.86 6933.86 100.0 0.9 0.1 69.5
5 6 3 5 6593.51 100.0 0.2 100.0 0.9 6593.51 6593.51 100.0 0.7 0.0 62.8

10 6 2 1 10294.48 100.0 240.2 99.2 7200.0 10294.48 10294.48 100.0 177.2 6.2 52.9
10 6 2 2 10265.25 100.0 785.2 100.0 1944.9 10265.25 10265.25 100.0 2182.1 27.5 63.9
10 6 2 3 9400.47 100.0 102.9 100.0 669.0 9400.47 9400.47 100.0 420.6 9.8 54.3
10 6 2 4 10161.40 100.0 150.7 100.0 1986.1 10161.40 10161.40 100.0 302.2 10.8 59.5
10 6 2 5 10391.07 100.0 82.9 100.0 341.9 10391.07 10391.07 100.0 316.4 6.5 47.1

10 6 3 1 11900.94 96.4 7200.0 94.4 7200.0 11900.94 11900.94 100.0 111.8 9.5 59.3
10 6 3 2 11929.85 100.0 5313.3 99.4 7200.0 11929.85 11929.85 100.0 133.6 11.3 68.9
10 6 3 3 10456.78 100.0 871.2 100.0 2929.3 10456.78 10456.78 100.0 1258.2 10.2 59.0
10 6 3 4 11598.75 100.0 2521.3 95.6 7200.0 11598.75 11598.75 100.0 1354.5 12.9 64.4
10 6 3 5 11192.68 100.0 1903.0 100.0 1962.0 11192.68 11192.68 100.0 268.6 7.2 51.0

15 6 2 1 12825.51 100.0 246.4 97.7 7200.0 12830.99 12648.57 98.6 7200.2 41.0 42.4
15 6 2 2 12821.22 100.0 263.1 99.4 7200.0 12826.37 12623.23 98.4 7200.3 58.3 44.3
15 6 2 3 14733.15 100.0 1251.9 97.6 7200.0 14796.15 14582.63 98.6 7200.3 44.7 43.8
15 6 2 4 11592.15 100.0 555.8 98.1 7200.0 11605.05 11442.76 98.6 7200.2 92.4 50.9
15 6 2 5 11748.70 100.0 1498.5 97.8 7200.0 11748.70 11504.56 97.9 7200.2 118.3 51.9

15 6 3 1 13785.72 96.5 7200.0 95.6 7200.0 13785.72 13624.12 98.8 7200.2 82.5 46.5
15 6 3 2 14009.39 97.0 7200.0 96.3 7200.0 14095.52 13693.86 97.2 7200.2 113.0 49.2
15 6 3 3 15974.42 95.5 7200.0 95.2 7200.0 16012.42 15791.81 98.6 7200.2 72.9 47.9
15 6 3 4 12734.73 97.4 7200.0 96.1 7200.0 12887.45 12449.05 96.6 7200.3 141.1 55.8
15 6 3 5 13134.22 95.5 7200.0 94.9 7200.0 13232.49 12715.72 96.1 7200.3 155.7 57.5

20 6 2 1 15946.57 n/a n/a n/a n/a 16098.83 15393.92 95.6 7200.3 2600.4 43.3
20 6 2 2 15144.35 n/a n/a n/a n/a 15191.83 14882.20 98.0 7200.3 260.8 37.4
20 6 2 3 15366.82 n/a n/a n/a n/a 15503.94 14968.21 96.5 7200.3 442.9 45.6
20 6 2 4 15850.97 n/a n/a n/a n/a 16274.16 15242.53 93.7 7200.3 1118.5 51.5
20 6 2 5 17654.71 n/a n/a n/a n/a 17909.43 16972.18 94.8 7200.3 1527.5 46.1

20 6 3 1 17853.11 n/a n/a n/a n/a 17932.95 16974.28 94.7 7200.2 821.3 48.9
20 6 3 2 15939.81 n/a n/a n/a n/a 15982.33 15498.24 97.0 7200.3 232.5 40.4
20 6 3 3 16871.90 n/a n/a n/a n/a 16825.56 16027.68 95.3 7200.3 248.2 49.9
20 6 3 4 18130.74 n/a n/a n/a n/a 17834.74 16987.27 95.2 7200.2 581.4 55.7
20 6 3 5 20298.58 n/a n/a n/a n/a 20429.06 19003.73 93.0 7200.3 835.4 52.8

25 6 2 1 16383.06 n/a n/a n/a n/a 16915.50 15868.56 93.8 7200.7 6402.9 44.4
25 6 2 2 18060.15 n/a n/a n/a n/a 20127.08 17275.64 85.8 7205.1 7026.8 48.6
25 6 2 3 19352.31 n/a n/a n/a n/a 20406.40 18873.77 92.5 7201.1 7097.1 43.5
25 6 2 4 16781.57 n/a n/a n/a n/a 17181.65 16388.07 95.4 7205.9 6825.6 43.1
25 6 2 5 20682.66 n/a n/a n/a n/a 22370.02 19923.07 89.1 7205.5 6941.5 42.5

25 6 3 1 17426.30 n/a n/a n/a n/a 17832.54 16705.73 93.7 7200.3 1290.5 47.1
25 6 3 2 20477.42 n/a n/a n/a n/a 19624.32 18790.26 95.7 7200.3 2616.6 47.2
25 6 3 3 21748.29 n/a n/a n/a n/a 21910.48 20570.19 93.9 7200.3 1630.2 47.4
25 6 3 4 18001.88 n/a n/a n/a n/a 18240.43 17357.35 95.2 7200.3 2856.9 46.3
25 6 3 5 23562.27 n/a n/a n/a n/a - 21688.16 - 7203.9 7115.1 -

30 6 3 1 n/a n/a n/a n/a n/a 27412.68 25034.46 91.3 7204.6 6913.0 39.9
30 6 3 2 n/a n/a n/a n/a n/a 22580.76 21445.55 95.0 7208.8 3137.7 39.4
30 6 3 3 n/a n/a n/a n/a n/a 25523.43 24282.77 95.1 7200.3 1979.3 34.1
30 6 3 4 n/a n/a n/a n/a n/a 20686.07 18930.76 91.5 7205.4 6402.6 45.9
30 6 3 5 n/a n/a n/a n/a n/a 21665.65 20412.67 94.2 7206.8 4814.3 40.4

30 6 4 1 n/a n/a n/a n/a n/a 28197.79 26702.31 94.7 7200.2 1828.9 41.5
30 6 4 2 n/a n/a n/a n/a n/a 24124.71 22720.94 94.2 7200.3 4235.9 43.2
30 6 4 3 n/a n/a n/a n/a n/a 26545.07 25212.25 95.0 7200.3 1282.1 36.7
30 6 4 4 n/a n/a n/a n/a n/a 21976.70 20205.37 91.9 7200.2 4461.9 49.1
30 6 4 5 n/a n/a n/a n/a n/a 22854.80 21564.19 94.4 7200.2 1673.7 43.6
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