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Abstract

In this study, we investigate a routing problem in urban transportation which considers time-

dependent travel time, multiple trips per vehicle, and loading time at the depot simultaneously. Its

objective is to minimize the total travel distance while satisfying the time windows, vehicle capacity,

and maximum trip duration constraints. We model the problem as a multi-trip time-dependent

vehicle routing problem with time windows (MT-TDVRPTW). We formulate the time-dependent

ready time function and duration function for any segment of consecutive nodes as piecewise linear

functions and develop an iterative algorithm to derive them efficiently. Then, these two functions are

embedded in the segment-based evaluation scheme to accelerate the local search operators. Based

on them, we design a hybrid meta-heuristic algorithm to solve the problem, leveraging the adaptive

large neighborhood search (ALNS) for guided exploration and the variable neighborhood descend

(VND) for intensive exploitation. Moreover, we propose problem-specific local search operators

and removal operators to enhance the effectiveness of the algorithm. Extensive experiments are

conducted to assess the performance of the algorithm on instances of varied sizes. The algorithm is

shown to be robust and efficient under different speed profiles and maximum trip duration limits.

Finally, we evaluate the performance of the algorithm on a special case: the multi-trip vehicle

routing problem with time windows.
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1. Introduction

This study is motivated by the routing design faced by a vending cafe company to replenish

stocks for their geographically dispersed outlets around Singapore. Each outlet has a different

capacity, demand, and time window for replenishment during the day. A fleet of small lorries is

deployed to fulfill the delivery tasks each day. To ensure the welfare and safety of employees, the

duration of each trip is limited, and drivers are entitled to a short break after the trip. Therefore,

multiple trips are performed by each driver per day. Another challenging issue is the varying travel

speeds throughout the day in Singapore. Indeed, drivers purposely avoid delivery to certain outlets

during certain periods of the day due to the traffic situations. Moreover, the loading time at the

depot needs to be considered explicitly in this context due to its impact on the departure time. This

problem also resembles other real-world applications, such as the home delivery of perishable foods

and the distribution of goods. We model this new variant as the multi-trip time-dependent vehicle

routing problem with time windows (MT-TDVRPTW), which considers the following features

together: time-dependent travel time, multiple trips per vehicle, required loading time at the depot,

time windows, and trip duration limit.

Most existing studies on vehicle routing problem (VRP) and its variant with time windows

(VRPTW) assumed implicitly that the travel time between two nodes is constant and independent

of the departure time. However, this assumption is seriously challenged because travel speeds on

the road vary substantially during peak and off-peak hours in the urban areas. Consequently, the

routes generated by the traditional time-invariant VRP approach are sub-optimal or even infeasible

under the time-dependent settings (Ichoua et al., 2003). As a result, the time-dependent vehicle

routing problem (TDVRP) and its variant with time windows (TDVRPTW) have been developed

to close the research gap (Malandraki & Daskin, 1992; Ichoua et al., 2003). However, they have

received less attention compared to other VRP variants because of their complexity. Thus, further

research should be conducted for the TDVRP and TDVRPTW (Gendreau et al., 2015).

It is common practice to allow vehicles to perform multiple trips in city logistics due to the

proximity of customers and the depot and the possible restriction on maximum trip duration. The

trip duration limit may be imposed by various managerial or legal constraints, such as the nature
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of perishable goods, release dates of merchandise, the regulatory constraint on maximum driving

hours, and regular disinfection requirement of ambulances in healthcare applications (Hernandez

et al., 2014; Cattaruzza et al., 2016; Lim et al., 2017). Previous research has highlighted that

allowing vehicles to perform multiple trips can significantly increase the utilization rate of vehicles

and reduce the number of vehicles required, which further leads to lower fixed and overall costs

(Cattaruzza et al., 2018). However, the consideration of time windows and maximum trip duration

in the multi-trip vehicle routing problem with time windows (MT-VRPTW) dramatically increases

the complexity of the problem (Azi et al., 2007; Zhang et al., 2015a; Lim et al., 2017), as it becomes

important to determine the departure time of each trip precisely. Furthermore, it is desirable to

consider the loading time of goods between trips under the multiple trip context.

The MT-TDVRPTW problem is NP-hard because it contains the TDVRPTW and the MT-

VRPTW as its special cases. It is interesting to note that this problem models various practical

features together, and this creates its unique characteristics and difficulties. First, the feasibility

check of a trip depends on the actual departure time from the depot due to time window constraints,

time-dependent travel time, and maximum trip duration constraint. It is possible that an infeasible

trip that violates the maximum trip duration constraint can become feasible if the vehicle can

start at an earlier or later time to avoid heavy traffic on the road. Consequently, the feasible

start-time window of a trip may be divided into several disconnected intervals, which differs from

the conclusion reported by Lim et al. (2017). Second, the feasibility check of a solution requires

a thorough evaluation of the trip assignments to available vehicles and careful scheduling of the

trips for each vehicle. These challenging characteristics necessitate a rigorous investigation of the

problem to propose suitable models and to design tailored algorithms.

Our main contributions include a formal description with related properties, a mixed integer

programming (MIP) model, an efficient evaluation scheme of a single trip, a hybrid meta-heuristic

framework, and comprehensive computational experiments for the MT-TDVRPTW. First, we

provide a formal description of the problem and define the time-dependent travel time function,

the time-dependent ready time function, and the time-dependent duration function explicitly as

piecewise linear functions. These functions can determine the feasible start-time windows and the

corresponding durations of a given trip. Second, we formulate the problem as an MIP, which can
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be solved directly by commercial solvers for small examples. Third, we extend the segment-based

evaluation method, used in Vidal et al. (2013), to this problem. This is accomplished by developing

an efficient iterative algorithm to concatenate two segments of nodes together and derive relevant

information of the time-dependent functions for the resulted segment. Next, we develop a hybrid

adaptive large neighborhood search (ALNS) algorithm (Ropke & Pisinger, 2006) that employs two

variable neighborhood descend (VND) (Hansen et al., 2019) operators as local search operators.

We then derive a new set of test instances and conduct extensive computational experiments for

the problem. The algorithm can solve the base test instances from Dabia et al. (2013) efficiently

and performs robustly on test instances with an increased number of time zones or with a shorter

maximum trip duration. Last, the performance of the algorithm is compared with an existing

algorithm on the special case MT-VRPTW.

The remainder of this paper is organized as follows. Section 2 presents a brief review on related

works. Section 3 provides the formal description and an MIP model for the problem. Section 4

models the time-dependent ready time function and the time-dependent duration function before

presenting the algorithm to concatenate two segments of consecutive nodes. The meta-heuristic

algorithm is explained in Section 5, followed by extensive computational results in Section 6.

Finally, the conclusion and possible direction of future studies are discussed in Section 7.

2. Literature review

Some existing researches have studied routing problems under time-dependent settings, such

as time-dependent demands (Nguyen et al., 2013, 2017) or time-dependent cost (Liu et al., 2018),

while the MT-TDVRPTW problem considers the time-dependent travel time as in Ichoua et al.

(2003); Dabia et al. (2013); Sun et al. (2018b,a). To the best of our knowledge, only Sun et al.

(2018c) has considered both time-dependent travel time and multiple trips together. However, Sun

et al. (2018c) developed a piecewise linear travel speed model which leads to a quadratic travel

time function, while the MT-TDVRPTW follows the widely used piecewise linear travel time

function model (Ichoua et al., 2003). Besides, Sun et al. (2018c) considered the maximal working

duration constraint per day for a vehicle, while the MT-TDVRPTW enforces the maximum trip

duration constraint and loading time constraint as in Azi et al. (2010); Macedo et al. (2011); Azi
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et al. (2014); Hernandez et al. (2014). Last, Sun et al. (2018c) extended the two-stage algorithm for

MT-VRPTW (Lang et al., 2010), whereas we customize a hybrid meta-heuristic algorithm which

employs an efficient and non-trivial segment-based evaluation scheme specially designed for the

MT-TDVRPTW with a piecewise linear travel time function. The subsequent review will focus on

TDVRPTW with a piecewise linear travel time model and MT-VRPTW for the sake of brevity.

2.1. Related works on TDVRPTW

The earliest work on TDVRP was reported in Malandraki & Daskin (1992) with an MIP model

and several heuristics for the problem. However, their stepwise travel time model might allow

solutions that violate the first-in first-out (FIFO) property. Later, Ichoua et al. (2003) resolved this

issue by modelling the travel speed as a stepwise function, which leads to a piecewise linear time-

dependent travel time function. Many studies have followed this model to investigate TDVRPTW

variants with different heuristic algorithms, such as ant colony system (Donati et al., 2008; Balseiro

et al., 2011; Liu et al., 2020), iterative route construction and improvement algorithm (Figliozzi,

2012), and adaptive large neighborhood search (Zhang et al., 2020). Besides, other interesting

TDVRP variants were also proposed by considering different characteristics, such as a congestion

charge scheme and a speed-dependent fuel cost (Wen & Eglese, 2015), multiple paths between any

pair of nodes (Huang et al., 2017), fuel consumption and carbon emission (Liu et al., 2020; Xiao &

Konak, 2016), and electric vehicles (Zhang et al., 2020). It is worthy to mention that Dabia et al.

(2013) proposed a novel branch-and-price algorithm to solve the duration-minimizing TDVRPTW

problem. The pricing problem is a time-dependent shortest path problem with resource constraints,

which is solved with a tailored label setting algorithm. The interested reader is referred to Gendreau

et al. (2015) for a comprehensive review of TDVRP.

Most research on the TDVRPTW aims to minimize the total travel time (Ichoua et al., 2003;

Donati et al., 2008; Balseiro et al., 2011; Figliozzi, 2012; Dabia et al., 2013; Sun et al., 2018b,a),

which differs from the objective of minimizing the total travel distance in the VRPTW. This is

because minimizing the total travel time under the TDVRPTW requires contemplated determination

of the actual departure times from the depot to minimize trip duration. Contrarily, so long as the

trip is feasible, its departure time is insignificant insofar as minimizing the total travel distance is
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concerned, as it is sufficient to set the departure time to the earliest possible time. Unfortunately,

this trivial approach does not apply to the MT-TDVRPTW as the departure time of a trip must

be carefully determined to satisfy the maximum trip duration. Moreover, the total travel distance

is a good indicator of the actual operational costs concerning fuel consumption. Thus, the MT-

TDVRPTW differs from previous research on TDVRPTW in two important aspects: 1) it aims

to minimize the total travel distance, and 2) it allows multiple trips and enforces loading time

constraint.

2.2. Related works on MTVRPTW

The multi-trip vehicle routing problem (MTVRP) has been explored by various researchers

(Taillard et al., 1996; Brandao & Mercer, 1997; Petch & Salhi, 2003; Olivera & Viera, 2007;

Alonso et al., 2008; Cattaruzza et al., 2014; François et al., 2016). However, the complexity of the

problem greatly increases with the introduction of time windows and maximum trip duration in the

MT-VRPTW, and the body of literature is inadequate. Moreover, the MT-VRPTW is interesting

and challenging as each trip is time-stamped and the scheduling of trips for a vehicle is not

straightforward. Battarra et al. (2009) studied an MT-VRPTW variant where two commodities are

incompatible to be transported together in the same vehicle. It applied a two-phase algorithm, which

used a greedy procedure to construct MT-VRPTW solutions from the VRPTW trips. Cattaruzza et al.

(2016) proposed a memetic algorithm to solve the MT-VRPTW with a release date which marks

when the merchandise will be available for delivery from the depot. Lim et al. (2017) proposed

a novel two-phase approach to solve a multi-trip pickup and delivery problem with manpower

planning, which includes the MT-VRPTW as a special case. The problem originated from the

public patient transportation service problem in Hong Kong. François et al. (2019) extended the

two ALNS algorithms in François et al. (2016) with the extension of segment-based evaluation

method in Vidal et al. (2013) for the MT-VRPTW. The computational experiments showed that

the multi-trip operators are very efficient under the time window constraint. Exact approaches for

MTVRP and MT-VRPTW are rare (Azi et al., 2007, 2010; Macedo et al., 2011; Hernandez et al.,

2014; Paradiso et al., 2020) and discussion are omitted due to space constraint. Interested readers

are referred to Cattaruzza et al. (2018).
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The MT-TDVRPTW is significantly more challenging than the MT-VRPTW. First, it requires

complicated calculations of the trip information under the time-dependent context. Second, the

feasible start-time window of a trip may be disconnected. Third, the trip duration fluctuates with the

departure time instead of a constant value. The aforementioned factors complicate the feasibility

check of a single trip and the scheduling of multiple trips for a vehicle in MT-TDVRPTW.

3. Problem description and modelling

In this section, we describe the MT-TDVRPTW in detail before presenting an MIP model for

the problem.

3.1. Basic notation

Let Vc = {1, 2, ..., n} denote the set of customers and 0 and n + 1 denote the starting and

the ending depots respectively. The MT-TDVRPTW is defined over a complete directed graph

G = (V, A), with node set V = Vc ∪ {0, n + 1} and arc set A = {(i, j) : i, j ∈ V, i , j}. Each

node i ∈ V is associated with a service time si, a demand qi, and a time window [ei, li]. Note that

q0 = qn+1 = 0, en+1 = e0, ln+1 = l0, and s0 = sn+1 = 0. The time span [e0, l0] defines a typical

workday. Additionally, each arc (i, j) ∈ A is associated with a distance di, j.

Let K denote a fleet of homogeneous vehicles with capacity Q. A trip is defined as a sequence

of node visits that starts from the depot, visits a sequence of customer nodes, and returns to the

depot. For each trip, goods are loaded at the depot before departure, and the required loading time

is proportional to the total service time incurred on the trip. The parameter of the proportion is set

as λ = 0.2 in this paper. The duration of a trip is defined as the difference between the arrival time at

the ending depot and the start time of loading at the starting depot, which must be smaller than the

maximum trip duration limit Tmax. As a result, a vehicle is allowed to perform several trips during

the workday. Let R denote the set of possible trips for a vehicle, then the pair (k, r),∀k ∈ K, r ∈ R is

used to represent the r-th trip performed by the k-th vehicle.

3.2. Time-dependent travel time

To capture the feature of time-dependent travel time, we follow the commonly used approach

proposed by Ichoua et al. (2003). The workday [e0, l0] is divided into non-overlapping time zones,
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denoted as indexed set T . Although the travel speed during a time zone remains constant, it changes

at the end of each time zone. The speed profile is modeled as a stepwise function (Figure 1) and is

defined for each arc (i, j) ∈ A. The time-dependent travel time for each arc (i, j) is then derived

based on its distance di, j and its speed profile.

Proposition 1. If the speed profile for an arc (i, j) is a stepwise function, then the derived time-

dependent travel time function is a piecewise linear function as depicted in Figure 2.

Figure 1: Travel Speed Function from i to j

Figure 2: Travel Time Function from i to j (the solid blue lines). The extended
yellow lines shows η1

i, j.

Proposition 1 directly follows the claim reported by Ichoua et al. (2003) and proof is omit-
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ted. There are two groups of break points in the travel time function: the speed break points

{w0
i, j,w

2
i, j,w

4
i, j,w

6
i, j,w

8
i, j,w

9
i, j} which are the boundary points of time zones independent of arcs, and

the travel time break points {w1
i, j, w3

i, j,w
5
i, j, w7

i, j} which are the departure times at node i such that

the corresponding arrival time at node j is equal to one of the speed break points (Figure 2).

It should be noted that the travel time break points are usually unique for each arc (i, j) due to

the distinctive distance di, j and its speed profile. Therefore, the resulting time zones of the travel

time function for an arc are also unique to the arc itself. We define the resulted arc time zones as

an indexed set Ti, j = {0, 1, 2, ..., |Ti, j| − 1} for each arc (i, j). We also define the b-th break point as

wb
i, j, ∀b ∈ Ti, j ∪ {|Ti, j|} and the m-th arc time zone as T m

i, j = [wm
i, j,w

m+1
i, j ), ∀m ∈ Ti, j. The actual travel

time τ̄i, j(wb
i, j) at the b-th break point wb

i, j can be calculated recursively using the algorithm proposed

by Ichoua et al. (2003).

The travel time function of an arc (i, j), denoted as τi, j(t), can now be uniquely determined by its

break points and the associated time-dependent travel times (Dabia et al., 2013; Sun et al., 2018b,a).

Without loss of generality, we let w0
i j = e0 = 0. For any arc time zone T m

i, j, m ∈ Ti, j, the slope θm
i, j of

the travel time function is calculated as

θm
i, j =

(
τ̄i j(wm+1

i j ) − τ̄i j(wm
i j)

)
/
(
wm+1

i j − wm
i j

)
; (1)

and the intersection of the line segment with the y-axis ηm
i, j is computed as

ηm
i j =

(
wm+1

i j τ̄i j(wm
i j) − wm

i jτ̄i j(wm+1
i j )

)
/
(
wm+1

i j − wm
i j

)
, ∀m ∈ Ti, j. (2)

Subsequently, the travel time required to traverse the arc (i, j) for any departure time t can be

directly computed as

τi, j(t) =
∑

m∈Ti, j

(
θm

i, jt + ηm
i, j

)
1T m

i, j
(t), ∀t ∈ [e0, l0], (3)

where 1T m
i, j

(t) is the indicator function whether t is in T m
i, j. Note that the actual travel time can

be calculated in O(log |Ti, j|) time with a binary search to find the correct time zone for a given
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departure time. The backward travel time function, denoted as τ−1
i, j (t), is defined as the travel time

required if the vehicle must travel along arc (i, j) and arrive at node j at exactly time t. τ−1
i, j (t) is also

a piecewise linear function and can be determined in a similar way as τi, j(t). Both τi, j(t) and τ−1
i, j (t)

will be used in the segment concatenation algorithm (Algorithm 1).

The objective of the MT-TDVRPTW is to find the min-cost solution that satisfies the customers’

time window constraints, maximum trip duration constraint, loading time constraint, and vehicle

capacity constraint. Same as the classical VRPTW, the travel cost is defined as the total travel

distance.

3.3. Mathematical formulation

The MIP model is based on the time-dependent travel time function with five indexes: the

vehicle index, the trip index, the arc time zone index, and the node indexes. The decision variables

are defined for all i, j ∈ V, k ∈ K, r ∈ R and m ∈ Ti, j. The binary variable xk,r,m
i, j indicates whether

vehicle trip (k, r) traverses arc (i, j) and departs from node i during arc time zone T m
i, j. We use

continuous variable tk,r,m
i, j to represent the departure time from node i if trip (k, r) departs from node

i to node j during time zone T m
i, j. It is set to 0 if trip (k, r) does not depart from node i to node j

during time zone T m
i, j. Similarly, binary variable yk,r

i represents whether trip (k, r) visits node i. We

use continuous variable ttk,r
i to represent the departure time from node i if trip (k, r) visits node i,

and it is set to 0 otherwise.

The MIP model is as follows:

min
∑
k∈K

∑
r∈R

∑
i∈{0}∪Vc

∑
j∈{n+1}∪Vc, i, j

∑
m∈Ti, j

di, jxk,r,m
i, j (4)

s.t. yk,r
0 =

∑
j∈Vc∪{n+1}

∑
m∈T0, j

xk,r,m
0, j = 1, ∀k ∈ K, r ∈ R, (5)

yk,r
n+1 =

∑
j∈{0}∪Vc

∑
m∈T j,n+1

xk,r,m
j,n+1 = 1, ∀k ∈ K, r ∈ R, (6)

yk,r
i =

∑
j∈{0}∪Vc\{i}

∑
m∈T j,i

xk,r,m
j,i =

∑
j∈Vc∪{n+1}\{i}

∑
m∈Ti, j

xk,r,m
i, j , ∀k ∈ K, r ∈ R, i ∈ Vc, (7)

∑
k∈K

∑
r∈R

yk,r
i = 1, ∀ i ∈ Vc, (8)
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∑
i∈Vc

qiyk,r
i ≤ Q, ∀k ∈ K, r ∈ R, (9)

ttk,r
i =

∑
j∈Vc∪{n+1}\{i}

∑
m∈Ti, j

tk,r,m
i, j , ∀k ∈ K, r ∈ R, i ∈ {0} ∪ Vc, (10)

ttk,r
n+1 =

∑
i∈{0}∪Vc

∑
m∈Ti,n+1

xk,r,m
i,n+1

{
tk,r,m
i,n+1 + τi,n+1(tk,r,m

i,n+1)
}
, ∀k ∈ K, r ∈ R, (11)

(
tk,r,m
i, j + τi, j(tk,r,m

i, j ) + s j

)
xk,r,m

i, j ≤ ttk,r
j , ∀k ∈ K, r ∈ R, i ∈ {0} ∪ Vc, j ∈ {n + 1} ∪ Vc, i , j, m ∈ Ti, j,

(12)

(ei + si) yk,r
i ≤ ttk,r

i ≤ (li + si) yk,r
i , ∀k ∈ K, r ∈ R, i ∈ V, (13)

wm
i, jx

k,r,m
i, j ≤ tk,r,m

i, j ≤ wm+1
i, j xk,r,m

i, j , ∀k ∈ K, r ∈ R, i ∈ {0} ∪ Vc, j ∈ {n + 1} ∪ Vc, i , j, m ∈ Ti, j,

(14)

ttk,1
0 ≥ λ

∑
i∈Vc

siyk,1
i , ∀k ∈ K, (15)

ttk,r
0 − ttk,r−1

n+1 ≥λ
∑
i∈Vc

siyk,r
i , ∀k ∈ K, r ∈ {2, 3, . . . , |R|}, (16)

ttk,r
n+1 − ttk,r

0 + λ
∑
i∈Vc

siyk,r
i ≤ Tmax, ∀k ∈ K, r ∈ R, (17)

xk,r,m
i, j ∈ {0, 1}, ∀i, j ∈ V, k ∈ K, r ∈ R, m ∈ T m

i, j, (18)

yk,r
i ∈ {0, 1}, ∀i ∈ V, k ∈ K, r ∈ R, (19)

tk,r,m
i, j ∈ [e0, l0], ∀i, j ∈ V, k ∈ K, r ∈ R, m ∈ T m

i, j, (20)

ttk,r
i ∈ [e0, l0], ∀i ∈ V, k ∈ K, r ∈ R. (21)

The objective (4) is to minimize the total travel distance of all trips. Constraints (5) and (6)

ensure that all the trips start from and return to the depot. Constraints (7) represent the flow

conservation constraints for all customer nodes for each trip. Constraints (8) guarantee that each

customer is served in exactly one trip. Constraints (9) are the capacity constraints for the trips.

Constraints (10) define the departure time of each trip (k, r) from node i, namely ttk,r
i , in terms of

the decision variables tk,r,m
i, j . Constraints (11) define the arrival time of each trip (k, r) at the ending

depot based on the departure time from the last customer of the trip and the time-dependent travel

time function. Constraints (12) are the time-consistent constraints. If arc (i, j) is traversed by trip
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(k, r), the corresponding departure time at node j must be greater than or equal to the departure

time at node i plus the time-dependent travel time from node i to node j and the service time of

node j. Constraints (13) ensure the time window requirement at each node.

Constraints (14) require that if a trip (k, r) leaves from node i to node j within an arc time zone

T m
i, j, then the departure time tk,r,m

i, j must belong to the interval [wm
i, j,w

m+1
i, j ]; otherwise, tk,r,m

i, j should be

set to 0. Constraints (15) and (16) guarantee sufficient loading time before departure for each trip.

Constraints (17) enforce the maximum duration for all trips. Constraints (18-21) define the range of

the decision variables.

With constraints (14) and the definition of function τi, j(t), we have xk,r,m
i,n+1tk,r,m

i,n+1 = tk,r,m
i,n+1 and

xk,r,m
i,n+1τi,n+1(tk,r,m

i,n+1) = θm
i,n+1tk,r,m

i,n+1 + ηm
i,n+1xk,r,m

i,n+1, ∀k ∈ K, r ∈ R, i ∈ {0} ∪ Vc. Therefore, constraints (11)

can be replaced by the following linear constraints:

ttk,r
n+1 =

∑
i∈{0}∪Vc

∑
m∈Ti,n+1

{(
1 + θm

i,n+1

)
tk,r,m
i,n+1 + ηm

i,n+1xk,r,m
i,n+1

}
, ∀k ∈ K, r ∈ R. (22)

Similarly, constraints (12) are not linear but can be linearized with the big-M method in the

following manner:

tk,r,m
i, j

(
1 + θm

i, j

)
+

(
ηm

i, j + Mi, j

)
xk,r,m

i, j − ttk,r
j ≤ Mi, j − s j, ∀k ∈ K,

r ∈ R, i ∈ {0} ∪ Vc, j ∈ {n + 1} ∪ Vc, i , j, m ∈ Ti, j,
(23)

where Mi, j = li + si + τi, j(li + si) + s j.

4. Segment-based trip evaluation

A key component of algorithms for routing problems is the feasibility evaluation of trips, which

is frequently invoked during the search process but can be time-consuming under the time-dependent

context. Vidal et al. (2013, 2014) developed a segment-based evaluation scheme for various VRP

variants that reduces the complexity of trip evaluation to constant time independent of the length

of the trip. Though Zhang et al. (2015a) and Lim et al. (2017) have extended the scheme to two

variants of VRPTW with multiple trips, no trivial extension is available for the MT-TDVRPTW.

Indeed, as highlighted by Vidal et al. (2014), this scheme is too complicated for the time-dependent
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problems as the structure and updating of the segment are very complex. Therefore, we devote this

section to discuss an efficient approach to the feasibility evaluation for the MT-TDVRPTW.

4.1. Ready time function and duration function

Dabia et al. (2013) introduced the ready time function and the duration function for a trip

originating from the depot. In this section, we generalize the concepts to any segment of consecutive

nodes, which is not required to originate from the depot.

Let σ = (σ1, σ2, ...σL) denote a segment of nodes, where σ1 ∈ {0} ∪ Vc, σL ∈ {n + 1} ∪ Vc,

and σi ∈ Vc, ∀ 1 < i < L. We define the ready time function δσσi
(t) for segment σ and node

σi as the time when service at node σi is completed if the vehicle starts to serve node σ1 at

time t and visits segment σ in order. The required loading time of segment σ is represented as

loadtime(σ) = λ
∑
σi∈σ sσi . We enforce that t ≥ max

{
e0 + loadtime(σ), eσ1

}
, i.e., the service at the

first node σ1 of the segment can only be started after the loading time and the earliest specified time

of node σ1. Then, the ready time function can be defined recursively as

δσσi
(t) =


t + sσ1 , if i = 1;

max
{
eσi , δ

σ
σi−1

(t) + τσi−1,σi

(
δσσi−1

(t)
)}

+ sσi , otherwise.
(24)

The duration function of the segment σ can be defined as φσ(t) = δσσL
(t) − t + loadtime(σ). A

segment is only feasible for a start time t if its duration φσ(t) is not larger than Tmax.

Proposition 2. If the speed profile of the MT-TDVRPTW is a stepwise function, then the following

claims hold for any segment σ and node σi: 1) the generated ready time function δσσi
(t) is a non-

decreasing piecewise linear function; 2) the generated duration function φσ(t) is also a piecewise

linear function; and 3) the generated ready time function and duration function share the same set

of break points.

Proof. As the travel time satisfies the FIFO principle, the ready time function is non-decreasing.

Next, the sum of two piecewise linear functions, the maximum of a constant value and a piecewise

linear function, and the sum of a constant value and a piecewise linear function all result in another

piecewise linear function. Therefore, both the ready time function and duration function are
13



piecewise linear functions. Last, adding a constant value to a piecewise linear function does not

change its break points.

We denote the inverse function of the ready time function as πσσi
(t), which is formally defined as

the latest time when the vehicle should start to serve node σ1 so that node σi will be ready by time

t. The inverse of the ready time function has the same property as the ready time function and can

be defined recursively too.

4.2. Time-dependent functions for concatenation

Figure 3: Concatenation 1. Two segments σ1 and σ2 Figure 4: Concatenation 2. Forward calculation of
Ready Time from σ1

L1
to σ2

1

The concatenation process for the MT-TDVRPTW is illustrated in Figures 3-6. These four

figures delineate the enumeration of all break points for the ready time function and the duration

function, which result from the concatenation of two given segments σ1 = (σ1
1, σ

1
2, ...σ

1
L1

) and

σ2 = (σ2
1, σ

2
2, ...σ

2
L2

). First, Figure 3 shows the original segments with their associated break points.

Second, σ1 is extended forward to σ2 at each of its break points to find the associated ready time at

the last node of σ2 (Figure 4). Furthermore, a break point is dropped if it cannot lead to a feasible

solution, i.e., violating the start-time window of σ2. Similarly, σ2 is extended backward to σ1

at each of its break points to find the associated departure time at the first node of σ1 (Figure 5).

Finally, the resulting set of break points determine the piecewise linear ready time and duration

functions for the concatenated segment denoted as σ1
⊕

σ2 (Figure 6).
14



Figure 5: Concatenation 3. Backward calculation of
Departure Time from σ2

1 to σ1
L1

Figure 6: Concatenation 4. Concatenated segment
with break points and duration

The feasibility of a given segment with respect to the duration limit can now be determined by

inspecting the break points of the segment one by one. If any of the break points yields a duration

less than or equal to Tmax, the segment is feasible (Figure 7). However, the feasible start-time

window for a segment may not be continuous because the segment must satisfy the maximum

trip duration constraint (Figure 8). Therefore, it is necessary to clearly determine the boundary

of the feasible start-time window by finding the time point in which the duration equals to Tmax

exactly. Note that in general, the inverse of the duration function is not well defined as there could

be multiple start times with a same duration value. Yet this can be achieved by identifying all the

line segments with one feasible and one infeasible end points, and then determining the new break

points (b1 , b2 , b3 , b4 in Figure 8) within the line segments. In the resulting duration function, the

feasible time window is divided into three disconnected regions, i.e., {[b0, b1], [b2, b3], [b4, b5]}.

The procedure for the concatenation of two segments is summarized in Algorithm 1. The list

of break points of the ready time function is defined as BPS (σ) for a segment σ. For a segment

with a single customer, the size of break points is upper bounded by |T | and it is clear that for

any segment σ, |BPS (σ)| ≤ |σ|T . Indeed, if the time windows of customers are tight, the size of

BPS (σ) can be greatly reduced during the concatenation; thus, Algorithm 1 runs in polynomial

time. If waiting for the concatenation is inevitable, the feasible time window for the concatenated

segment will collapse into a single point in time. It is worthwhile noting that the time complexity
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Figure 7: Duration Function Figure 8: Reduced Duration Function

of concatenation with a segment consisting of only one single break point is constant. Moreover,

if the earliest arrival time at σ2
1 from σ1

L1
is greater than the latest feasible start time at σ2

1 for the

segment σ2, the concatenation is infeasible.

4.3. Updating functions of concatenation

The original segment proposed by Vidal et al. (2013) contains single values for the segment’s

information, such as the total cost, the total loads, the earliest start time, and the latest start time,

etc. For the MT-TDVRPTW, we also capture the cost C(σ) and the loads Q(σ) for each segment

σ. The segment σ with a single customer i is initialized with C(σ) = 0 and Q(σ) = qi. For the

concatenated segment σ1
⊕

σ2, we trivially have C(σ1
⊕

σ2) = C(σ1) + C(σ2) + cσ1
L1
,σ2

1
and

Q(σ1
⊕

σ2) = Q(σ1) + Q(σ2). The capacity constraint for a segment can then be checked to

ascertain whether Q(σ1
⊕

σ2) ≤ Q.

Next, we extend the segment to store the time-dependent ready time and duration functions

for each segment, which includes the break points and their associated durations, the slopes and

the intersections of the line segments, and the feasibility of the break points. This information is

updated based on Algorithm 1.

All the information of the segments of an existing solution can be pre-computed and stored in

the memory. As the basic swap and relocate operators involve the recombination of a small number

of segments, they can be evaluated in O (|σ||T |) time.
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Algorithm 1 Calculate Break Points and Durations for Concatenation of two Segments
1: Break Point Set B = {}

2: for each ready time break point t1 at σ1
L1

in set BPS (σ1) do
3: Extend forward from σ1

L1
to σ2

1 to determine the arrival time tarr at σ2
1 as t1 + τσ1

L1
,σ2

1
(t1)

4: Determine the associated ready time at σ2
L2

as δσ
2

σ2
L2

(tarr)

5: Calculate the duration from σ1
1 to σ2

L2

6: Insert the break point into B
7: end for
8: for each ready time break point t2 at σ2

L2
in set BPS (σ2) do

9: Find the associated start time t̄2 at σ2
1 for t2

10: Extend backward from σ2
1 to σ1

L1
to obtain the departure time tdep at σ1

L1
as t̄2 − τ−1

σ1
L1
,σ2

1
(t̄2)

11: Determine the associated start time at σ1
1 as πσ

1

σ1
1
(tdep)

12: Calculate duration from σ1
1 to σ2

L2

13: Insert the break point into B
14: end for
15: Remove any break points outside the time windows of σ1 and σ2

16: New Break Point Set B′ = {}

17: for i ∈ {1, 2, .., |B| − 1} do
18: if exactly one of Bi and Bi−1 is feasible then
19: Find the boundary point b̄ and insert into B′

20: end if
21: end for
22: B = B ∪ B′, and mark the feasibility of each break point with regard to maximum trip duration

limit

5. ALNS-VND meta-heuristic

Hybrid meta-heuristic algorithms have been widely used in routing-related problems (Vidal et al.,

2013; Akpinar, 2016; Zhang et al., 2015a; Lim et al., 2017). The variable neighborhood descend

(VND) defines a list of neighbourhood structures and performs search in them in a cyclical and

systematic way, which enables to escape the local minimum defined in a particular neighbourhood

structure. With well-defined neighborhoods, VND is shown to be a good candidate for local search

as it can intensify the search efficiently (Zhang et al., 2015b; Lim et al., 2017; Zeng et al., 2016).

On the other hand, the adaptive large neighborhood search (ALNS) proposed by Ropke & Pisinger

(2006) has gained popularity due to its efficiency and effectiveness in solving several VRPTW

variants (Azi et al., 2014; Demir et al., 2012; Gschwind & Drexl, 2019; François et al., 2016,
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2019). The ALNS adapts an "ruin-and-recreate" approach with a set of removal operators and

repair operators. In each iteration, a pair of removal and repair operators are selected based on

their historical performances, through which the ALNS adaptively destroys part of the incumbent

solution and recreates a new solution. As the ALNS adaptively perturbs the incumbent solution

with a large neighbourhood structure, it can diversify the search whenever the VND procedure

is stuck in local optima. Hence, a hybrid ALNS-VND algorithm would be promising to produce

high-quality solutions by leveraging the strengths of both. The segment-based evaluation in Section

4 is deployed to accelerate the feasibility checks in both components.

The pseudocode of the algorithm is shown in Algorithm 2. The solution representation is

described in Section 5.1, and the construction algorithm is explained in Section 5.2. In the main

ALNS loop, a new solution is first obtained by the removal and repair operators (Section 5.4), and

then improved by two VND operators (Section 5.3). The new solution is accepted if its cost is

better than the cost of the incumbent solution. The probability of removal and repair operators are

updated based on the quality of the solutions obtained. This process is repeated until the stopping

criteria are met.

Algorithm 2 ALNS-VND
1: Construct the initial solution S
2: S best = S , NonImp = 0
3: while termination conditions are not met do
4: Select removal & repair operators adaptively
5: S ′ = RemovalAndRepair(S )
6: S ′ = VND(S ′)
7: if cost(S ′) < cost(S best) then
8: NonImp = 0, S best = S ′

9: else
10: NonImp = NonImp + 1
11: end if
12: if cost(S ′) < cost(S ) then
13: S = S ′

14: end if
15: Update scores and probability for removal and repair operators
16: end while
17: return S best
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5.1. Solution representation and evaluation

A trip is the fundamental building block to the solution representation, which can be evaluated

efficiently using the segment-based evaluation method (Section 4.2). Each vehicle performs a

sequence of trips. The feasibility of a vehicle’s assignment can be checked by scanning the trips in

sequence to find a feasible schedule. This can be done in O(|R|) time as the information has been

pre-computed for all the trips. A solution is feasible if all trips are feasible and each vehicle has a

feasible schedule for its assigned trips. An example of an MT-TDVRPTW solution is depicted in

Figure 9.

Figure 9: Example of a multi-trip solution with 15 customers and 2 vehicles

5.2. Construction algorithm

The initial solution is constructed through a look-ahead approach named regret insert (RI),

which has been proven to be very effective in problems with tight constraints (Ropke & Pisinger,

2006; Zhang et al., 2015a; Lim et al., 2017). Each vehicle is initialized with an empty trip, and

then the customers are iteratively selected and inserted to the best place according to the following

criterion. Let ∆Ci,r be the lowest additional cost to insert a customer i into a trip r, and ∆Ci,r is set to

+∞ if customer i cannot be inserted into the trip r. A greedy insertion algorithm always searches for

the candidate customer i and trip r with the lowest insertion cost ∆Ci,r. Conversely, the RI method

chooses customer i with the largest regret value RVi =
∑k

j=1(∆Ci,r j −∆Ci,r1), where r j is increasingly

sorted by the additional cost of inserting customer i to route r j. Note that RI always maintains an

empty trip at the end of each vehicle. Besides, the parameter k in RVi can take different values to

increase the number of steps to look-ahead, thus the corresponding RI method is denoted as reg-k.

In our implementation, k is randomly chosen as 1, 2, or 3 to increase the randomness of the initial

solution. Note that the reg-k method becomes the greedy insertion when k = 1. Furthermore, the

reg-k methods are also used in the VND operator (Section 5.3) and the repair stage of the ALNS

algorithm (Section 5.4).
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5.3. VND local search

We propose two types of moving operators for local search, which are used repeatedly one after

another until no further improvement is obtained.

First, we extend the traditional relocation and swap of customer(s) to the multiple trip context.

We adopt these two operators in three scenarios: intra-trip, inter-trip yet within the same vehicle,

and inter-trip across two different vehicles. If the resulted trip is feasible, but there is no feasible

schedule for the vehicle, the local search operator will relocate the trip to another position within

the same vehicle if possible. If such attempt is unsuccessful, it will further attempt to shift the trip

to another vehicle. The relocation of a trip will be made only if the resulted solution is feasible.

Thus, the operators can explore a larger solution space.

However, traditional relocation and swap operators can still be trapped in sub-optimal solutions.

We develop a second type of operator by enlarging the neighborhood through small scale removal

and repair. A new solution is accepted only if it is better than the incumbent solution. The removal

options include the removal of one trip from a vehicle, the removal of two consecutive trips from

a vehicle, and removal of one trip from each of the two vehicles selected. The reg-k methods are

randomly chosen to repair the solution by reinserting all removed customers one by one.

5.4. ALNS

We adopt the ALNS framework from Ropke & Pisinger (2006) with customization for the

MT-TDVRPTW.

5.4.1. Removal and repair operators

The key idea of ALNS is to relocate misplaced customers to a better position in the solution to

reduce the total travel cost (Ropke & Pisinger, 2006). Therefore, two factors considerably affect its

effectiveness in a highly constrained problem like the MT-TDVRPTW: the closeness of the removed

customers to each other and the gap created by the removal of customers within the trip. In this

paper, we design a new closeness measure in the time-dependent context. For a pair of customers i

and i′, the closeness measure is defined as CL(i, i′) = t̄i,i′ + γwt max
{
0, ei′ − li − si − τi,i′(li + si)

}
+

γtw max
{
0, ei + si + τi,i′(ei + si) − li′

}
, where t̄i,i′ is the average time needed to travel from customer
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i to customer i′ during the feasible time window; γwt is the penalty parameter for waiting time at

customer i′ when the vehicle leaves customer i at the latest possible time li + si; and γtw is the penalty

parameter for violation of time window at customer i′ even if the vehicle leaves from customer i at

the earliest possible time ei + si. If the path from customer i to customer i′ is not feasible, t̄i,i′ and

CL(i, i′) will be set as +∞. Additionally, we remove one adjacent customer within the trip during

the removal process to enlarge the gap and increase the chance of inserting new customers to fill the

gap. We design two removal lists to differentiate between these two types of removal: 1) the first

list contains customers selected based on the closeness measure, and 2) the second list stores the

neighboring customers removed. The customers in both lists will be removed from the incumbent

solution; however, only customers from the first list will be used to search for the next customer for

removal.

We propose five removal operators: 1) random customer selection where customers are selected

randomly; 2) related customer selection where two initial customers are randomly selected, and

other customers are selected with probability based on the new closeness measure and the two

removal lists are used; 3) trip effectiveness-based related customer selection which is similar to the

second operator except for the way that initial customers are selected. A trip is chosen and removed

with probability based on its effectiveness in meeting the demands of the customers over its incurred

cost; 4) mixed related customer selection which uses both the second and third operators to select

the initial customers; 5) worst customer selection which adopts a similar idea introduced by Ropke

& Pisinger (2006) to select customers with probability based on the insertion cost of the customer.

The reg-k methods are used to reinsert the removed customers back to the solution where k is

selected from {1, 2, 3}.

5.4.2. Roulette wheel selection

The removal and repair operators are selected using the roulette wheel selection approach. Each

operator j in the operator set O is given a dynamic weight of w j based on its historical performance.

The probability of selecting operator j is w j/
∑

i∈O wi. In the initial stage, all operators have equal

weights and equal probabilities of selection. For each ALNS iteration, an integer score of ρ1 or ρ2

is awarded to the selected operator if it yields a new global best solution or a better solution than
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the incumbent solution respectively, and no score would be awarded otherwise. The entire search

is then broken down into phases of 100 iterations, during which the weights of operators are not

changed. Let w j,p be the weight of operator j for phase p. Then at the end of the p-th phase, we

update the weight of operator j for phase p + 1 as follows:

w j,p+1 = (1 − r)w j,p + r
π j,p

max{1, θ j,p}
, (25)

where π j,p is the sum of score for operator j in the phase p, θ j,p is the number of times operator j is

invoked, and r ∈ (0, 1) is the reaction rate to control the speed of weight adjustment. The larger the

value of r is, the faster the weights are changed based on the latest score.

5.4.3. Dynamic perturbation strength

The strength of perturbation in ALNS is defined as the number of customers removed from the

incumbent solution. When the VND local search and ALNS perturbation fail to find a better solution,

it is desirable to increase the strength of the perturbation gradually. Therefore, we maintain a counter

NonImp, which is increased by 1 if the perturbation fails to find a better global solution and is reset

to 0 otherwise. At the beginning of the algorithm, we set the number of requests to be removed as

ηmin = αn, where α is the factor for the minimum number of customers to be removed. Subsequently,

the number of requests ηstrenth is updated dynamically as min{0.5, α + 0.005NonImp} × n.

6. Computational experiments

This section presents the test instances, configuration of the algorithm, and computational

results on MT-TDVRPTW and MT-VRPTW. Our algorithm is coded in Java and the MIP model is

solved with IBM ILOG CPLEX 12.8.0 (IBM CPLEX, 2017). All experiments are run in an Ubuntu

18.04.3 LTS server with Intel(R) Xeon(R) Silver 4216 CPU of 2.10 GHz. All test instances and

the detailed routing plans are available online at http://www.computational-logistics.org/

orlib/MTTDVRPTW.
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6.1. Test instances for MT-TDVRPTW

The test instances are derived based on the TDVRPTW instances proposed by Dabia et al.

(2013), who extended Solomon’s benchmark data with time-dependent travel time information in a

similar way of Ichoua et al. (2003). The TDVRPTW instances randomly assign each arc with one

of three speed profiles, representing heavy, medium, and light traffic conditions respectively. The

workday [e0, l0] is divided into five time zones of varied width. For the MT-TDVRPTW, we only

use the C2, R2, and RC2 instances as in the MT-VRPTW (Azi et al., 2010; Macedo et al., 2011;

Hernandez et al., 2014; Lim et al., 2017), since type-1 instances limit the number of possible trips

performed by a vehicle due to their narrow time windows.

The newly generated instances are grouped with the naming convention of "Tn − |T | − |R|",

where n is the number of customers, |T | denotes the number of time zones, and |R| indicates the

number of allowed trips per vehicle. As shown in Table 1, instances with 15, 50, and 100 customers

and 2, 3, and 5 vehicles are generated respectively. Two values are given for Tmax because C2

instances have a longer service time and require a higher Tmax than R2 and RC2.

Table 1: MT-TDVRPTW test instance groups

Group n |T| |R| Tmax |K| MAXRT

T15-5-2 15 5 2 550/1500 2 600
T15-11-2 15 11 2 550/1500 2 600

T50-5-5 50 5 5 300/750 3 1800
T50-7-5 50 7 5 300/750 3 1800
T50-11-5 50 11 5 300/750 3 1800
T50-5-10 50 5 10 250/550 3 1800

T100-5-5 100 5 5 300/750 5 3600

The last column (MAXRT ) is the maximum runtime allowed for the ALNS-VND algorithm. It

may terminate earlier if no improving solutions are obtained for consecutive ωn iterations, where

the parameter ω is determined during the parameter tuning stage. The ALNS-VND is run 10 times

for each instance with different random seeds. Additionally, the exact solver is given a maximum

runtime of 7200 seconds for groups T15-5-2 and T15-11-2.
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Table 2: Numerical parameter list

Name Type Range Description

γwt Real [0.1, 1] Penalty parameter for waiting time at next customer i′ when the vehicle leaves
previous customer i at the latest possible time li + si

γtw Real [0.1, 2] Penalty parameter for violation of time window at next customer i′ even if the
vehicle leaves from previous customer i at the earliest possible time ei + si

α Real [0.2, 0.35] Factor for minimum number of customers to be removed in ALNS
ω Integer [40, 100] Factor for maximum number of non-improving iterations allowed
ρ1 Integer [25, 40] Score of finding a better global solution in an ALNS iteration
ρ2 Integer [5, 20] Score of finding a better solution than the incumbent solution in an ALNS iteration
r Real [0.85, 0.99] The reaction rate to control the speed of weight adjustment in wheel roulette

6.2. Automatic configuration

The numerical parameters of the ALNS-VND algorithm listed in Table 2 are tuned with

an automatic algorithm configuration tool, the IRACE package (López-Ibáñez et al., 2016). A

configuration in IRACE refers to a set of values assigned to the algorithmic parameters. IRACE

is an implementation of the iterated racing, which consists of three iterative steps: (1) sampling

new configurations based on the current sampling distribution, (2) evaluating and selecting the best

configurations through racing, and (3) updating the sampling distribution to bias towards the best

configurations. The IRACE package takes in the algorithm itself, a set of parameters to be tuned,and

a set of training instances as input. A training budget is set to control the maximum number of

configuration runs allowed, which is set to 10,000 in this experiment. For each configuration

run, the algorithm is applied to one of the given training instances with a maximum run time of

600 seconds and returns the best solution cost found. IRACE is executed in parallel mode with a

maximum of 100 concurrent runs. Upon termination of the configuration runs, IRACE returns a set

of elite configurations ordered from best to worst.

As in François et al. (2016, 2019), IRACE is used to select algorithmic design options, for

example, which removal and repair operators are effective and should be included in the ALNS-

VND algorithm. New boolean parameters are introduced to turn the operators on or off, which is

then tuned by IRACE together with the numerical parameters.

Table 3 shows the values of all the algorithmic parameters of the 6 elite configurations returned

by the IRACE package. For the design options, "1" indicates that IRACE chooses to turn on the

design option, and "0" indicates otherwise. It is interesting to note that the related customer removal
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Table 3: Elite configurations by rank of performance

Configuration # #1 #2 #3 #4 #5 #6

Numerical
γwt 0.26 0.62 0.32 0.35 0.19 0.25
γtw 1.02 0.41 1.08 0.97 1.17 1
α 0.32 0.24 0.33 0.32 0.33 0.35
ω 79 61 89 99 99 86
ρ1 30 36 31 33 33 30
ρ2 9 14 6 7 6 7
r 0.92 0.91 0.9 0.9 0.91 0.92

Removal
Random customer 1 1 1 1 1 1
Related customer 0 1 0 0 0 0
Trip effectiveness based 1 1 1 1 1 1
Mixed trip and customer 1 0 1 1 1 1
Worst customer 1 0 1 1 1 1

Repair
reg-1 (Greedy) 0 1 0 0 0 0
reg-2 1 1 1 1 1 1
reg-3 1 1 1 1 1 1

operator and the greedy reg-1 repair operator are only turned on by IRACE once, while the other

operators are turned on in almost all the elite configurations. The possible explanation is that the

related customer removal operator is very similar to the mixed trip and customer removal operator,

except for how the initial customers are selected. Hence, its contributions in practice could be

overshadowed. On the other hand, the greedy reg-1 repair operator is ineffective compared to the

reg-2 and reg-3 operators for MT-TDVRPTW with tight constraints.

In the subsequent experiments, the ALNS-VND adopts the best configuration (#1) with the

highest score among the elite configurations as the actual parameter values.

6.3. Results and analysis on the MT-TDVRPTW instances

The main computational results are covered in this section. We first evaluate the correctness of

the proposed algorithm in 6.3.1 by comparing results obtained by CPLEX on small instances and

then provide benchmark results for the medium and large scale instances in 6.3.2. We then study

the performances of the algorithm under a larger |T | in 6.3.3 and evaluate the impact of a smaller

Tmax on solutions in 6.3.4.
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6.3.1. Results on the small instances

The small instances of 15 customers are solved with both the ALNS-VND and the CPLEX

optimizer to evaluate the correctness of the ALNS-VND algorithm. The detailed results are reported

in Table 4. For the CPLEX optimizer, we report whether the optimal value is found, the best solution

cost found (CCPLEX), and the run time required (TCPLEX). For the ALNS-VND, the table shows the

best solution cost (Cbst), the average best solution cost (Cavg) among 10 runs, and the fastest time

to find the best solution (Tbst). According to the results, only 12 instances in group T15-11-2 are

solved to optimality within 7200 seconds, compared to 23 instances in T15-5-2. This demonstrates

the growing complexity of the problem with the increased number of time zones. However, the

ALNS-VND can obtain the optimal or best solutions for all instances in short run times, and even

better solutions for three instances in group T15-11-2.

Table 4: IBM CPLEX Optimizer vs ALNS-VND with 15 customers
T15-5-2 T15-11-2

IBM CPLEX ALNS-VND IBM CPLEX ALNS-VND
Inst. Optimal? CCPLEX TCPLEX Cbst Cavg Tbst Optimal? CCPLEX TCPLEX Cbst Cavg Tbst

C201 Y 211.75 0.7 211.75 211.75 0.1 Y 211.75 0.9 211.75 211.75 0.2
C202 Y 203.07 409.9 203.07 203.07 1.3 N 203.07 7206.5 203.07 203.07 2.4
C203 Y 203.07 2773.7 203.07 203.07 2.1 N 203.07 7214.8 203.07 203.07 4.7
C204 Y 188.68 4127.8 188.68 188.68 5.2 N 188.68 7218.9 188.68 188.68 12.5
C205 Y 208.79 8.3 208.79 208.79 0.2 Y 208.79 19.6 208.79 208.79 0.3
C206 Y 208.79 14.7 208.79 208.79 0.3 Y 208.79 239.2 208.79 208.79 0.5
C207 Y 204.85 161.6 204.85 204.85 0.6 Y 204.85 1050.9 204.85 204.85 1.0
C208 Y 203.07 86.3 203.07 203.07 0.6 Y 203.07 1094.7 203.07 203.07 1.1
R201 Y 343.68 5.9 343.68 343.68 1.0 Y 341.03 15.0 341.03 341.03 2.7
R202 Y 297.80 1133.7 297.80 297.80 3.6 N 297.52 7208.0 297.52 297.52 5.2
R203 Y 297.52 2030.4 297.52 297.52 2.0 N 297.52 7213.0 297.52 297.55 4.1
R204 Y 266.59 1785.8 266.59 266.59 21.7 N 266.59 7212.4 266.59 266.59 59.6
R205 Y 278.08 14.9 278.08 278.08 0.9 Y 278.08 31.0 278.08 278.08 1.3
R206 Y 248.91 70.6 248.91 248.91 3.0 Y 248.91 5465.3 248.91 248.91 7.4
R207 Y 248.91 196.8 248.91 248.91 3.6 N 248.91 7209.3 248.91 248.91 7.9
R208 Y 238.23 1834.0 238.23 238.23 4.8 N 238.23 7214.8 238.23 238.23 14.2
R209 Y 263.48 36.4 263.48 263.48 12.5 Y 263.48 127.4 263.48 263.48 9.9
R210 Y 292.15 273.9 292.15 292.15 22.1 N 292.15 7214.8 292.15 293.23 45.1
R211 Y 247.23 96.0 247.23 247.23 1.5 N 261.16 7215.5 256.66 257.37 28.8

RC201 Y 313.08 18.7 313.08 313.08 0.3 Y 288.84 22.0 288.84 288.84 0.5
RC202 N 235.37 7210.9 235.37 235.37 1.4 N 235.37 7211.0 235.37 235.37 4.5
RC203 N 198.64 7210.3 198.64 198.64 1.5 N 198.64 7216.5 198.64 198.64 5.2
RC204 N 192.18 7212.0 192.18 192.18 27.6 N - 7200.0 192.18 192.38 86.8
RC205 Y 236.69 140.6 236.69 236.69 0.6 Y 200.76 44.8 200.76 200.76 1.8
RC206 Y 204.22 80.7 204.22 204.22 0.8 Y 204.22 580.3 204.22 204.22 1.1
RC207 Y 189.06 278.5 189.06 189.06 2.6 N 189.06 7210.6 189.06 189.06 9.1
RC208 N 157.01 7200.0 157.01 157.01 2.4 N 161.51 7200.0 158.53 159.59 44.4

26



6.3.2. Results on the medium and large scale instances

The time zones of instances in groups T50-5-5 and T100-5-5 are the same as TDVRPTW

instances Dabia et al. (2013). They are solved by the ALNS-VND algorithm and the results are

presented in Table 5. With the doubling of the customer size, the T100-5-5 instances become

much more difficult to solve and require on average 2.7 times Tbst as T50-5-5 does. Additionally,

the solutions are more diverse as the average standard deviation (S.D) of solution costs increases

significantly from 11.8 to 36.8. As there are no existing benchmark results on the MT-TDVRPPTW,

these results can serve as benchmark for future studies.

Table 5: ALNS-VND on T50-5-5 and T100-5-5
T50-5-5 T100-5-5

Inst. Cbst Cavg S.D Tbst Cbst Cavg S.D Tbst

C201 779.72 780.67 1.89 90.4 1562.79 1581.08 21.76 3553.8
C202 716.39 720.78 5.16 327.9 1541.90 1563.86 17.21 2927.3
C203 697.39 709.55 6.56 694.5 1502.68 1555.95 29.61 3129.8
C204 653.84 661.46 5.81 1712.6 1488.92 1532.59 32.39 2424.7
C205 748.32 754.72 3.12 676.4 1515.94 1578.57 39.83 2768.2
C206 731.44 738.72 5.42 1461.9 1510.00 1545.03 20.06 3180.6
C207 709.39 718.89 7.10 1005.9 1504.16 1522.65 17.55 2575.0
C208 670.07 675.87 5.49 247.9 1481.65 1507.64 22.11 2474.1
R201 998.81 1009.50 8.42 852.5 1478.71 1506.99 27.85 3478.4
R202 861.81 875.56 10.99 677.5 1296.00 1325.08 21.11 3093.5
R203 748.29 764.32 8.88 1384.5 1119.34 1144.87 18.19 2829.1
R204 580.01 592.31 8.08 1692.7 956.21 1002.44 54.92 2395.4
R205 783.46 798.14 9.02 597.7 1194.20 1240.74 40.12 3165.5
R206 713.36 727.55 9.09 1396.4 1115.28 1162.80 36.85 2842.9
R207 644.97 677.68 21.55 1678.0 1052.67 1109.96 27.96 1944.8
R208 550.88 580.10 20.56 1144.5 956.71 1006.53 31.37 2855.7
R209 688.03 710.21 16.07 1699.5 1072.51 1114.54 42.90 3469.9
R210 742.39 766.37 12.92 1124.4 1134.07 1158.22 23.15 1886.7
R211 613.05 635.86 21.22 1407.9 979.90 1070.49 64.64 2810.7

RC201 1060.56 1076.83 15.92 565.5 1713.99 1776.96 49.23 2847.9
RC202 982.64 991.03 10.13 568.2 1500.71 1534.27 36.58 2987.1
RC203 819.38 832.79 17.22 882.3 1330.17 1375.18 40.94 1935.5
RC204 604.62 621.38 28.51 452.2 1048.58 1141.94 76.50 939.6
RC205 1049.40 1082.68 18.98 868.9 1595.45 1655.52 44.96 2161.4
RC206 817.59 818.23 0.70 1096.6 1378.03 1435.29 34.40 2212.5
RC207 701.15 737.43 16.41 1617.8 1241.56 1304.69 38.91 3368.9
RC208 566.15 617.93 27.95 1155.9 1079.17 1206.22 81.18 1652.6

27



6.3.3. Analysis on instances with more time zones

In real life applications, the travel speeds change more frequently and rapidly throughout the

day, which might make the instances more difficult to solve. It is therefore interesting to evaluate

the performance of the proposed algorithm on instances with larger value of |T |. The three groups

(T15-11-2, T50-7-5, and T50-11-5) are served for this purpose where all the time zones are set to

have equal widths.

The results of group T15-11-2 in Table 4 already demonstrate the significant growing of

complexity for commercial solvers, while medium instances in groups T50-7-5 and T50-11-5 are

used to investigate the impact on the proposed ALNS-VND algorithm. The comparison results with

base group T50-5-5 are summarized in Table 6. Generally speaking, the instances with more time

zones lead to longer travel distance and computational times, and larger standard deviation among

solutions. However, the trend is not stable. For example, the S.D of RC2 in T50-7-5 is the smallest

among the three instance groups, and the average Cbst for T50-7-5 is the highest among the three

instance groups across C2, R2, and RC2. Those suggest that the solutions found for T50-7-5 may

deviate far away from the solutions found for T50-5-5 and T50-11-5.

Table 6: Impact of increased number of time zones on test instances with 50 customers

Group Set Cbst S.D Tbst

T50-5-5 C2 713.32 5.07 777.2
R2 720.46 13.35 1241.4
RC2 825.19 16.98 900.9

T50-7-5 C2 723.87 5.20 883.4
R2 739.43 15.00 1071.0
RC2 868.95 13.85 1299.0

T50-11-5 C2 710.36 8.33 1119.0
R2 734.08 14.16 1148.1
RC2 851.13 26.80 1275.7

6.3.4. Impact of a smaller Tmax

The value of Tmax places an important restriction on the feasibility of a single trip. A smaller

Tmax may increase the number of trips performed by a vehicle and then the complexity of multi-trip
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scheduling, which makes the problem even tougher to solve. In this section, we analyze the impact

of a smaller Tmax through the group T50-5-10.

Table 7 presents the comparison between the results of T50-5-5 and T50-5-10. First, it shows

that the smaller Tmax affects C2 more significantly than R2 and RC2 in terms of the average cost Cbst

and the average number of trips per vehicle. The average cost Cbst for C2 increases by more than

25% to 896.31 and the average number of trips per vehicle increases by 38%, while the increases for

the same measures are less significant for R2 and RC2. The observed increases could be attributed

to the fact that customers are located in clusters in C2. When Tmax is larger as in T50-5-5, a vehicle

could potentially serve more clustered customers in a single trip, and hence reduce the total travel

distance, and the number of trips required to serve all customers. Second, the average Tbst for R2 is

reduced, while it has increased for C2 and RC2. It shows that the ALNS-VND does not necessarily

require longer run times with a smaller Tmax. Third, the average S.Ds of the best solution costs for

C2 and R2 increase slightly, while the value for RC2 is reduced. Lastly, we compare the ratio of the

average trip duration against the maximum trip duration, which is reported in the column "Util(%)".

The results show that the utilization rates have indeed increased for T50-5-10.

Table 7: Impact of reduced maximum trip duration on test instances with 50 customers

Group Set Cbst S.D Tbst Ntrips Util(%)
T50-5-5 C2 713.32 5.07 777.2 3.17 87.58

R2 720.46 13.35 1241.4 2.01 85.91
RC2 825.19 16.98 900.9 2.04 86.56

T50-5-10 C2 896.31 5.64 891.1 4.38 88.59
R2 758.34 13.39 1173.6 2.28 87.51
RC2 895.99 12.50 1306.7 2.43 87.35

6.4. Comparison on MT-VRPTW instances

To further evaluate the performance of the ALNS-VND algorithm, we modify it to solve the

MT-VRPTW, which can be viewed as a special case of the MT-TDVRPTW problem without the

time-dependent information. Its performance is then compared with the combined iterated local

search and VND (ILS-VND) algorithm in Lim et al. (2017). To maintain consistency with the

notation used for the MT-VRPTW, we change the maximum trip duration limit to the goods travel
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duration (TGT ) for MT-VRPTW, which is defined as the arrival time at the last customer in the route

minus the departure time from the depot. We solve four groups of MT-VRPTW instances, namely,

M1 and M2 with 25 customers and M3 and M4 with 40 customers (Table 8). M2 and M4 differ

from M1 and M3 with a larger TGT , which enlarges the solution spaces.

Table 8: MT-VRPTW test instance groups

Group n |K| |R| TGT MAXRT

M1 25 2 10 75/220 1800
M2 25 2 10 100/250 1800
M3 40 2 10 75/220 1800
M4 40 2 10 100/250 1800

Table 9 summarizes the number of the Same or Better Solutions (SBS) found with both

algorithms, the average of the best solution costs (Avg Cbst), the average of the solution costs found

over 10 runs (Avg Cost), and the average of the best run times to find the best solutions (Avg

Tbst). The details of each instance are reported in the supplemental material. For M1 and M2

with 25 customers, the ALNS-VND performs very well as it finds the same Cbst for all the 27 test

instances with a reasonable computational time compared to those required by (Lim et al., 2017).

The ALNS-VND finds the same Cbst for each of the 10 runs for 24 of the test instances in M1 and 23

of the test instances in M2. For the other 7 instances, the ALNS-VND finds sub-optimal solutions

with slightly higher costs in some of the 10 runs (See Supplemental Material). Due to the increased

number of customers in M3 and M4, it is impossible to serve all customers in some instances.

Therefore, these test instances are excluded from the comparisons. Overall, we use 15 instances in

M3 and 20 instances in M4 for evaluation. Generally, the performances of the ALNS-VND on M3

and M4 instances deviate slightly from the previous algorithm. The ALNS-VND performs better

for M4 than for M3 when compared to the results reported by Lim et al. (2017): 1) it finds better

solutions for 4 test instances in M4, and 2) it yields better average Cbst than Lim et al. (2017) for

C2 and RC2 in M4. One possible reason is that the ILS-VND algorithm in Lim et al. (2017) is

designed specifically to search both feasible and infeasible solution spaces and normally performs

better for problems with very tight constraints, such as M3.

In summary, although the ALNS-VND algorithm is not specifically designed for the MT-
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VRPTW, the experiment confirms its correctness and competitiveness in solving the MT-VRPTW

instances.

Table 9: ALNS-VND (AV) vs Lim et al. (2017)(Lim) on MT-VRPTW
SBS Avg Cbst Avg Cost Avg Tbst

Group Set #Inst. AV Lim AV Lim Gap AV Lim Gap AV Lim
M1 C2 8 8 8 631.43 631.43 - 631.59 631.43 0.03% 25.0 42.6

R2 11 11 11 620.13 620.13 - 620.13 620.13 - 6.1 13.2
RC2 8 8 8 804.07 804.07 - 804.15 804.07 0.01% 87.9 51.2

M2 C2 8 8 8 530.27 530.27 - 530.27 530.27 - 1.5 1.6
R2 11 11 11 544.99 544.99 - 545.27 544.99 0.05% 10.0 28.0
RC2 8 8 8 629.29 629.29 - 629.52 629.29 0.04% 5.8 7.6

M3 C2 7 6 7 1076.74 1076.14 0.06% 1082.48 1077.58 0.45% 617.4 677.8
R2 8 6 8 912.23 910.69 0.17% 919.10 915.14 0.43% 722.2 820.6
RC2 - - - - - - - - - - -

M4 C2 8 8 6 922.18 922.43 -0.03% 924.54 922.94 0.17% 414.7 680.1
R2 10 6 9 798.09 797.41 0.09% 801.76 798.88 0.36% 611.1 424.6
RC2 2 2 1 958.89 960.43 -0.16% 996.10 975.86 2.07% 798.5 753.7

7. Conclusion

This paper has investigated a new and important VRP variant in city logistics that simultaneously

considers the time-dependent travel time, multiple trips, time windows, and maximum trip duration

constraint together. This problem bears significant and practical value due to its realistic modelling

of city logistics. We first presented an MIP model and modelled the time-dependent travel time,

ready time, and duration functions explicitly as piecewise linear functions. More importantly,

we developed the segment-based evaluation scheme to the time-dependent setting, which can

dramatically accelerate the meta-heuristic algorithm. Subsequently, we proposed the ALNS-VND

to solve the problem and the related MT-VRPTW problem. Extensive experiments were conducted

to demonstrate the performance of the proposed algorithm.

The characteristics of multiple trips and time-dependent travel time usually cannot be ignored

in the practical applications of city logistics. The existing algorithms for many kinds of VRP

variants cannot be trivially extended to deal with these considerations. Thus, future research efforts

should aim to design specially tailored algorithms. We believe that our work will serve to raise

awareness and attract attention to this area. Moreover, further research should be undertaken to
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develop improved meta-heuristic algorithm, potential decomposition methods and branch-and-price

algorithm for the MT-TDVRPTW.
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